Multi-level stochastic refinement for complex time series and fields: a data-driven approach

Spatio-temporally extended nonlinear systems often exhibit a remarkable complexity in space and time. In many cases, extensive datasets of such systems are difficult to obtain, yet needed for a range of applications. Here, we present a method to generate synthetic time series or fields that reproduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-06, Vol.23 (6), p.63063, Article 063063
Hauptverfasser: Sinhuber, M, Friedrich, J, Grauer, R, Wilczek, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!