Dynamical suppression of Coulomb interaction and sub-fs jitter correction in electron pulse compression

Achieving a few-femtosecond (fs) temporal resolution in electron diffraction and electron microscopy is essential for directly tracking the electronic processes and the fastest atomic motions in molecule and condensed matter systems. The intrinsic Coulomb interaction among electrons broadens the pul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-09, Vol.22 (9), p.93004
Hauptverfasser: Qi, Yingpeng, Yang, Yan, Sun, Haitao, Wang, Xuan, Cao, Jianming, Ernstorfer, Ralph, Sun, Zhenrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 93004
container_title New journal of physics
container_volume 22
creator Qi, Yingpeng
Yang, Yan
Sun, Haitao
Wang, Xuan
Cao, Jianming
Ernstorfer, Ralph
Sun, Zhenrong
description Achieving a few-femtosecond (fs) temporal resolution in electron diffraction and electron microscopy is essential for directly tracking the electronic processes and the fastest atomic motions in molecule and condensed matter systems. The intrinsic Coulomb interaction among electrons broadens the pulse duration and restricts the temporal resolution. To tackle this issue, the electron pulse compression by the time-varying electric fields at optical, THz and RF wavelengths has been demonstrated recently. However, the Coulomb interaction still exists in the compression process and the impact of the Coulomb interaction to the compression remains largely unaccounted for. In this work, we quantify the impact of the Coulomb interaction and present three intrinsic characters of Coulomb interaction in the compression process: the Coulomb interaction is dynamically suppressed as the compression field strength rises; the electron pulse with arbitrary kinetic energy (eV to MeV) suffers the same amount of Coulomb interaction, i.e. the Coulomb interaction is independent on the kinetic energy in compression; the dynamical suppression of Coulomb interaction within a single pulse gives rise to a dispersion of the temporal focus and impedes the further compression to attosecond. Potential applications based on the revealed characters of the Coulomb interaction in the compression process are discussed. Based on the dynamical evolution of the Coulomb interaction, three stages are identified to describe the compression process, which is beyond the ballistic compression model. Additionally, a robust and noninvasive jitter correction approach matching well with the compression regime is presented and the proof-of-principle experiment demonstrates a sub-fs accuracy.
doi_str_mv 10.1088/1367-2630/abaa88
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_abaa88</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b041ae6dccda497187a91d063c919f11</doaj_id><sourcerecordid>2440685668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-fe0de87626533bf459b8e5e9cc056b1d66ba95192ccd819e3b377dc47d54a3113</originalsourceid><addsrcrecordid>eNp9kTlPxDAQhSMEEstCTxmJgoawduw4domWU0KigdoaH1k5ysbBTgr-PV7CVSAqP7158401k2WnGF1ixPkKE1YXJSNoBQqA871s8W3t_9KH2VGMLUIY87JcZJvrtx62TkOXx2kYgo3R-T73Tb72U-e3Knf9aAPocWdDb1JMFU3MWzcmP9c-BDsXXZ_bLumQ9DB10abi9ot4nB00kLyTz3eZvdzePK_vi8enu4f11WOhKeVj0VhkLK9ZySpCVEMrobitrNAaVUxhw5gCUWFRam04FpYoUtdG09pUFAjGZJk9zFzjoZVDcFsIb9KDkx-GDxsJYXS6s1IhisEyk1BARY15DQIbxIgWWDQfrLOZNQT_Otk4ytZPoU_flyWliPGKMZ5SaE7p4GMMtvmeipHcnUbudi93u5fzaVLLxdzi_PDD_Cd-_ke8bwdZllJIJAhCVA6mIe9lOJ5-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440685668</pqid></control><display><type>article</type><title>Dynamical suppression of Coulomb interaction and sub-fs jitter correction in electron pulse compression</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Qi, Yingpeng ; Yang, Yan ; Sun, Haitao ; Wang, Xuan ; Cao, Jianming ; Ernstorfer, Ralph ; Sun, Zhenrong</creator><creatorcontrib>Qi, Yingpeng ; Yang, Yan ; Sun, Haitao ; Wang, Xuan ; Cao, Jianming ; Ernstorfer, Ralph ; Sun, Zhenrong</creatorcontrib><description>Achieving a few-femtosecond (fs) temporal resolution in electron diffraction and electron microscopy is essential for directly tracking the electronic processes and the fastest atomic motions in molecule and condensed matter systems. The intrinsic Coulomb interaction among electrons broadens the pulse duration and restricts the temporal resolution. To tackle this issue, the electron pulse compression by the time-varying electric fields at optical, THz and RF wavelengths has been demonstrated recently. However, the Coulomb interaction still exists in the compression process and the impact of the Coulomb interaction to the compression remains largely unaccounted for. In this work, we quantify the impact of the Coulomb interaction and present three intrinsic characters of Coulomb interaction in the compression process: the Coulomb interaction is dynamically suppressed as the compression field strength rises; the electron pulse with arbitrary kinetic energy (eV to MeV) suffers the same amount of Coulomb interaction, i.e. the Coulomb interaction is independent on the kinetic energy in compression; the dynamical suppression of Coulomb interaction within a single pulse gives rise to a dispersion of the temporal focus and impedes the further compression to attosecond. Potential applications based on the revealed characters of the Coulomb interaction in the compression process are discussed. Based on the dynamical evolution of the Coulomb interaction, three stages are identified to describe the compression process, which is beyond the ballistic compression model. Additionally, a robust and noninvasive jitter correction approach matching well with the compression regime is presented and the proof-of-principle experiment demonstrates a sub-fs accuracy.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/abaa88</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Compressive strength ; Condensed matter physics ; Coulomb interaction ; Diffraction ; Electric fields ; Electron diffraction ; electron pulse compression ; Energy ; Field strength ; jitter correction ; Kinetic energy ; Laboratories ; Lasers ; Physics ; Pulse compression ; Pulse duration ; Temporal resolution ; Time compression ; ultrafast electron diffraction ; Vibration</subject><ispartof>New journal of physics, 2020-09, Vol.22 (9), p.93004</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-fe0de87626533bf459b8e5e9cc056b1d66ba95192ccd819e3b377dc47d54a3113</citedby><cites>FETCH-LOGICAL-c448t-fe0de87626533bf459b8e5e9cc056b1d66ba95192ccd819e3b377dc47d54a3113</cites><orcidid>0000-0003-1471-8876 ; 0000-0001-5950-8157 ; 0000-0003-3769-693X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/abaa88/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,861,2096,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Qi, Yingpeng</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Sun, Haitao</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Cao, Jianming</creatorcontrib><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><title>Dynamical suppression of Coulomb interaction and sub-fs jitter correction in electron pulse compression</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Achieving a few-femtosecond (fs) temporal resolution in electron diffraction and electron microscopy is essential for directly tracking the electronic processes and the fastest atomic motions in molecule and condensed matter systems. The intrinsic Coulomb interaction among electrons broadens the pulse duration and restricts the temporal resolution. To tackle this issue, the electron pulse compression by the time-varying electric fields at optical, THz and RF wavelengths has been demonstrated recently. However, the Coulomb interaction still exists in the compression process and the impact of the Coulomb interaction to the compression remains largely unaccounted for. In this work, we quantify the impact of the Coulomb interaction and present three intrinsic characters of Coulomb interaction in the compression process: the Coulomb interaction is dynamically suppressed as the compression field strength rises; the electron pulse with arbitrary kinetic energy (eV to MeV) suffers the same amount of Coulomb interaction, i.e. the Coulomb interaction is independent on the kinetic energy in compression; the dynamical suppression of Coulomb interaction within a single pulse gives rise to a dispersion of the temporal focus and impedes the further compression to attosecond. Potential applications based on the revealed characters of the Coulomb interaction in the compression process are discussed. Based on the dynamical evolution of the Coulomb interaction, three stages are identified to describe the compression process, which is beyond the ballistic compression model. Additionally, a robust and noninvasive jitter correction approach matching well with the compression regime is presented and the proof-of-principle experiment demonstrates a sub-fs accuracy.</description><subject>Compressive strength</subject><subject>Condensed matter physics</subject><subject>Coulomb interaction</subject><subject>Diffraction</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>electron pulse compression</subject><subject>Energy</subject><subject>Field strength</subject><subject>jitter correction</subject><subject>Kinetic energy</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Physics</subject><subject>Pulse compression</subject><subject>Pulse duration</subject><subject>Temporal resolution</subject><subject>Time compression</subject><subject>ultrafast electron diffraction</subject><subject>Vibration</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTlPxDAQhSMEEstCTxmJgoawduw4domWU0KigdoaH1k5ysbBTgr-PV7CVSAqP7158401k2WnGF1ixPkKE1YXJSNoBQqA871s8W3t_9KH2VGMLUIY87JcZJvrtx62TkOXx2kYgo3R-T73Tb72U-e3Knf9aAPocWdDb1JMFU3MWzcmP9c-BDsXXZ_bLumQ9DB10abi9ot4nB00kLyTz3eZvdzePK_vi8enu4f11WOhKeVj0VhkLK9ZySpCVEMrobitrNAaVUxhw5gCUWFRam04FpYoUtdG09pUFAjGZJk9zFzjoZVDcFsIb9KDkx-GDxsJYXS6s1IhisEyk1BARY15DQIbxIgWWDQfrLOZNQT_Otk4ytZPoU_flyWliPGKMZ5SaE7p4GMMtvmeipHcnUbudi93u5fzaVLLxdzi_PDD_Cd-_ke8bwdZllJIJAhCVA6mIe9lOJ5-</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Qi, Yingpeng</creator><creator>Yang, Yan</creator><creator>Sun, Haitao</creator><creator>Wang, Xuan</creator><creator>Cao, Jianming</creator><creator>Ernstorfer, Ralph</creator><creator>Sun, Zhenrong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1471-8876</orcidid><orcidid>https://orcid.org/0000-0001-5950-8157</orcidid><orcidid>https://orcid.org/0000-0003-3769-693X</orcidid></search><sort><creationdate>20200901</creationdate><title>Dynamical suppression of Coulomb interaction and sub-fs jitter correction in electron pulse compression</title><author>Qi, Yingpeng ; Yang, Yan ; Sun, Haitao ; Wang, Xuan ; Cao, Jianming ; Ernstorfer, Ralph ; Sun, Zhenrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-fe0de87626533bf459b8e5e9cc056b1d66ba95192ccd819e3b377dc47d54a3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive strength</topic><topic>Condensed matter physics</topic><topic>Coulomb interaction</topic><topic>Diffraction</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>electron pulse compression</topic><topic>Energy</topic><topic>Field strength</topic><topic>jitter correction</topic><topic>Kinetic energy</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Physics</topic><topic>Pulse compression</topic><topic>Pulse duration</topic><topic>Temporal resolution</topic><topic>Time compression</topic><topic>ultrafast electron diffraction</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yingpeng</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Sun, Haitao</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Cao, Jianming</creatorcontrib><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yingpeng</au><au>Yang, Yan</au><au>Sun, Haitao</au><au>Wang, Xuan</au><au>Cao, Jianming</au><au>Ernstorfer, Ralph</au><au>Sun, Zhenrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical suppression of Coulomb interaction and sub-fs jitter correction in electron pulse compression</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>22</volume><issue>9</issue><spage>93004</spage><pages>93004-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Achieving a few-femtosecond (fs) temporal resolution in electron diffraction and electron microscopy is essential for directly tracking the electronic processes and the fastest atomic motions in molecule and condensed matter systems. The intrinsic Coulomb interaction among electrons broadens the pulse duration and restricts the temporal resolution. To tackle this issue, the electron pulse compression by the time-varying electric fields at optical, THz and RF wavelengths has been demonstrated recently. However, the Coulomb interaction still exists in the compression process and the impact of the Coulomb interaction to the compression remains largely unaccounted for. In this work, we quantify the impact of the Coulomb interaction and present three intrinsic characters of Coulomb interaction in the compression process: the Coulomb interaction is dynamically suppressed as the compression field strength rises; the electron pulse with arbitrary kinetic energy (eV to MeV) suffers the same amount of Coulomb interaction, i.e. the Coulomb interaction is independent on the kinetic energy in compression; the dynamical suppression of Coulomb interaction within a single pulse gives rise to a dispersion of the temporal focus and impedes the further compression to attosecond. Potential applications based on the revealed characters of the Coulomb interaction in the compression process are discussed. Based on the dynamical evolution of the Coulomb interaction, three stages are identified to describe the compression process, which is beyond the ballistic compression model. Additionally, a robust and noninvasive jitter correction approach matching well with the compression regime is presented and the proof-of-principle experiment demonstrates a sub-fs accuracy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/abaa88</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1471-8876</orcidid><orcidid>https://orcid.org/0000-0001-5950-8157</orcidid><orcidid>https://orcid.org/0000-0003-3769-693X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-09, Vol.22 (9), p.93004
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_abaa88
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Compressive strength
Condensed matter physics
Coulomb interaction
Diffraction
Electric fields
Electron diffraction
electron pulse compression
Energy
Field strength
jitter correction
Kinetic energy
Laboratories
Lasers
Physics
Pulse compression
Pulse duration
Temporal resolution
Time compression
ultrafast electron diffraction
Vibration
title Dynamical suppression of Coulomb interaction and sub-fs jitter correction in electron pulse compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A05%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20suppression%20of%20Coulomb%20interaction%20and%20sub-fs%20jitter%20correction%20in%20electron%20pulse%20compression&rft.jtitle=New%20journal%20of%20physics&rft.au=Qi,%20Yingpeng&rft.date=2020-09-01&rft.volume=22&rft.issue=9&rft.spage=93004&rft.pages=93004-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/abaa88&rft_dat=%3Cproquest_iop_j%3E2440685668%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440685668&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b041ae6dccda497187a91d063c919f11&rfr_iscdi=true