Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures
Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of t...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2020-08, Vol.22 (8), p.83046 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 83046 |
container_title | New journal of physics |
container_volume | 22 |
creator | Vasil'ev, Peter P Penty, Richard V |
description | Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state. |
doi_str_mv | 10.1088/1367-2630/aba3e8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_aba3e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff746a74f48c474c870947523578d4c0</doaj_id><sourcerecordid>2434859354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</originalsourceid><addsrcrecordid>eNp1UbluGzEQXRg2YFl275JAijSRzSVHu9wyEOIDMJAmhktieFkUJHJDcov8fShv4KSIq7nee3M1zXVLb1oqxG3Lu37FOk5vUSG34qRZvKdO__HPm4ucd5S2rWBs0Wxf_Guwibgp6OJjIBgMGbexVDdMB1VLxueSvJreytERJHkabUpoPIZCcsFiiQ8k24PXMZhJl5jI1habYmXWcEo2XzZnDvfZXv2xy-b57tuPzcPq6fv94-br00oDiLJiCoTrWovQA-u0U50GMWDPGKOguHUDHTrH6DAopzjqAYEbZbFlximlHV82j7OuibiTY_IHTL9kRC_fEjG9SkzF672VzvXQYQ8OhK7ttOjpAP2a8XUvDGhatT7NWmOKPyebi9zFKYU6vmTAQawHvoaKojNK131zsu69a0vl8TfyeHx5PL6cf1Mpn2eKj-NfzbAbJWNSSCo4hU6O5rjOl_8gPxT-DXAJn6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434859354</pqid></control><display><type>article</type><title>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vasil'ev, Peter P ; Penty, Richard V</creator><creatorcontrib>Vasil'ev, Peter P ; Penty, Richard V</creatorcontrib><description>Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aba3e8</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>displaced Fock state ; Heterostructures ; homodyne tomography ; Parameter estimation ; Photons ; Physics ; superradiance ; Wigner function</subject><ispartof>New journal of physics, 2020-08, Vol.22 (8), p.83046</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</citedby><cites>FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aba3e8/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Vasil'ev, Peter P</creatorcontrib><creatorcontrib>Penty, Richard V</creatorcontrib><title>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.</description><subject>displaced Fock state</subject><subject>Heterostructures</subject><subject>homodyne tomography</subject><subject>Parameter estimation</subject><subject>Photons</subject><subject>Physics</subject><subject>superradiance</subject><subject>Wigner function</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1UbluGzEQXRg2YFl275JAijSRzSVHu9wyEOIDMJAmhktieFkUJHJDcov8fShv4KSIq7nee3M1zXVLb1oqxG3Lu37FOk5vUSG34qRZvKdO__HPm4ucd5S2rWBs0Wxf_Guwibgp6OJjIBgMGbexVDdMB1VLxueSvJreytERJHkabUpoPIZCcsFiiQ8k24PXMZhJl5jI1habYmXWcEo2XzZnDvfZXv2xy-b57tuPzcPq6fv94-br00oDiLJiCoTrWovQA-u0U50GMWDPGKOguHUDHTrH6DAopzjqAYEbZbFlximlHV82j7OuibiTY_IHTL9kRC_fEjG9SkzF672VzvXQYQ8OhK7ttOjpAP2a8XUvDGhatT7NWmOKPyebi9zFKYU6vmTAQawHvoaKojNK131zsu69a0vl8TfyeHx5PL6cf1Mpn2eKj-NfzbAbJWNSSCo4hU6O5rjOl_8gPxT-DXAJn6o</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vasil'ev, Peter P</creator><creator>Penty, Richard V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200801</creationdate><title>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</title><author>Vasil'ev, Peter P ; Penty, Richard V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>displaced Fock state</topic><topic>Heterostructures</topic><topic>homodyne tomography</topic><topic>Parameter estimation</topic><topic>Photons</topic><topic>Physics</topic><topic>superradiance</topic><topic>Wigner function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil'ev, Peter P</creatorcontrib><creatorcontrib>Penty, Richard V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil'ev, Peter P</au><au>Penty, Richard V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>83046</spage><pages>83046-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aba3e8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2020-08, Vol.22 (8), p.83046 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_iop_journals_10_1088_1367_2630_aba3e8 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | displaced Fock state Heterostructures homodyne tomography Parameter estimation Photons Physics superradiance Wigner function |
title | Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wigner%20function%20and%20photon%20number%20distribution%20of%20a%20superradiant%20state%20in%20semiconductor%20heterostructures&rft.jtitle=New%20journal%20of%20physics&rft.au=Vasil'ev,%20Peter%20P&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=83046&rft.pages=83046-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aba3e8&rft_dat=%3Cproquest_iop_j%3E2434859354%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434859354&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ff746a74f48c474c870947523578d4c0&rfr_iscdi=true |