Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures

Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-08, Vol.22 (8), p.83046
Hauptverfasser: Vasil'ev, Peter P, Penty, Richard V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 83046
container_title New journal of physics
container_volume 22
creator Vasil'ev, Peter P
Penty, Richard V
description Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.
doi_str_mv 10.1088/1367-2630/aba3e8
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_aba3e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff746a74f48c474c870947523578d4c0</doaj_id><sourcerecordid>2434859354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</originalsourceid><addsrcrecordid>eNp1UbluGzEQXRg2YFl275JAijSRzSVHu9wyEOIDMJAmhktieFkUJHJDcov8fShv4KSIq7nee3M1zXVLb1oqxG3Lu37FOk5vUSG34qRZvKdO__HPm4ucd5S2rWBs0Wxf_Guwibgp6OJjIBgMGbexVDdMB1VLxueSvJreytERJHkabUpoPIZCcsFiiQ8k24PXMZhJl5jI1habYmXWcEo2XzZnDvfZXv2xy-b57tuPzcPq6fv94-br00oDiLJiCoTrWovQA-u0U50GMWDPGKOguHUDHTrH6DAopzjqAYEbZbFlximlHV82j7OuibiTY_IHTL9kRC_fEjG9SkzF672VzvXQYQ8OhK7ttOjpAP2a8XUvDGhatT7NWmOKPyebi9zFKYU6vmTAQawHvoaKojNK131zsu69a0vl8TfyeHx5PL6cf1Mpn2eKj-NfzbAbJWNSSCo4hU6O5rjOl_8gPxT-DXAJn6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434859354</pqid></control><display><type>article</type><title>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vasil'ev, Peter P ; Penty, Richard V</creator><creatorcontrib>Vasil'ev, Peter P ; Penty, Richard V</creatorcontrib><description>Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aba3e8</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>displaced Fock state ; Heterostructures ; homodyne tomography ; Parameter estimation ; Photons ; Physics ; superradiance ; Wigner function</subject><ispartof>New journal of physics, 2020-08, Vol.22 (8), p.83046</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</citedby><cites>FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aba3e8/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Vasil'ev, Peter P</creatorcontrib><creatorcontrib>Penty, Richard V</creatorcontrib><title>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.</description><subject>displaced Fock state</subject><subject>Heterostructures</subject><subject>homodyne tomography</subject><subject>Parameter estimation</subject><subject>Photons</subject><subject>Physics</subject><subject>superradiance</subject><subject>Wigner function</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1UbluGzEQXRg2YFl275JAijSRzSVHu9wyEOIDMJAmhktieFkUJHJDcov8fShv4KSIq7nee3M1zXVLb1oqxG3Lu37FOk5vUSG34qRZvKdO__HPm4ucd5S2rWBs0Wxf_Guwibgp6OJjIBgMGbexVDdMB1VLxueSvJreytERJHkabUpoPIZCcsFiiQ8k24PXMZhJl5jI1habYmXWcEo2XzZnDvfZXv2xy-b57tuPzcPq6fv94-br00oDiLJiCoTrWovQA-u0U50GMWDPGKOguHUDHTrH6DAopzjqAYEbZbFlximlHV82j7OuibiTY_IHTL9kRC_fEjG9SkzF672VzvXQYQ8OhK7ttOjpAP2a8XUvDGhatT7NWmOKPyebi9zFKYU6vmTAQawHvoaKojNK131zsu69a0vl8TfyeHx5PL6cf1Mpn2eKj-NfzbAbJWNSSCo4hU6O5rjOl_8gPxT-DXAJn6o</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vasil'ev, Peter P</creator><creator>Penty, Richard V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200801</creationdate><title>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</title><author>Vasil'ev, Peter P ; Penty, Richard V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-2b48f61ea47426cfb6c489a722204b3ef9096f2099bfb3ac9a43dbea12dfbbcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>displaced Fock state</topic><topic>Heterostructures</topic><topic>homodyne tomography</topic><topic>Parameter estimation</topic><topic>Photons</topic><topic>Physics</topic><topic>superradiance</topic><topic>Wigner function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil'ev, Peter P</creatorcontrib><creatorcontrib>Penty, Richard V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil'ev, Peter P</au><au>Penty, Richard V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>83046</spage><pages>83046-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Advanced quantum technologies require sources of non-Gaussian and non-classical light. For the understanding of properties of quantum light it is necessary to reconstruct its quantum state. Here, we use time-domain optical homodyne tomography for the quantum state recognition and reconstruction of the femtosecond optical field from a nonequilibrium superradiant coherent electron-hole state formed in a semiconductor GaAs/AlGaAs heterostructure. We observe severe deviations from the Poissonian statistics of the photons associated with the coherent state when the transformation from lasing to superradiance occurs. The estimated Mandel parameter Q of the superradiant states is in the range of 1.08-1.89. The reconstructed Wigner functions show large areas of negative values, a characteristic sign of non-classicality, demonstrating the quantum nature of the generated superradiant emission. The photon number distribution and Wigner function of the superradiant state are very similar to those of the displaced Fock state.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aba3e8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-08, Vol.22 (8), p.83046
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_aba3e8
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects displaced Fock state
Heterostructures
homodyne tomography
Parameter estimation
Photons
Physics
superradiance
Wigner function
title Wigner function and photon number distribution of a superradiant state in semiconductor heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wigner%20function%20and%20photon%20number%20distribution%20of%20a%20superradiant%20state%20in%20semiconductor%20heterostructures&rft.jtitle=New%20journal%20of%20physics&rft.au=Vasil'ev,%20Peter%20P&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=83046&rft.pages=83046-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aba3e8&rft_dat=%3Cproquest_iop_j%3E2434859354%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434859354&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ff746a74f48c474c870947523578d4c0&rfr_iscdi=true