Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice

Following the realization of Weyl semimetals in quantum electronic materials, classical wave analogues of Weyl materials have also been theorized and experimentally demonstrated in photonics and acoustics. Weyl points in elastic systems, however, have been a much more recent discovery. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-08, Vol.22 (8), p.83001
Hauptverfasser: Ganti, Sai Sanjit, Liu, Ting-Wei, Semperlotti, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 83001
container_title New journal of physics
container_volume 22
creator Ganti, Sai Sanjit
Liu, Ting-Wei
Semperlotti, Fabio
description Following the realization of Weyl semimetals in quantum electronic materials, classical wave analogues of Weyl materials have also been theorized and experimentally demonstrated in photonics and acoustics. Weyl points in elastic systems, however, have been a much more recent discovery. In this study, we report on the design of an elastic fully-continuum three-dimensional material that, while offering structural and load-bearing functionalities, is also capable of Weyl degeneracies and surface topologically-protected modes in a way completely analogous to its quantum mechanical counterpart. The topological characteristics of the lattice are obtained by ab initio numerical calculations without employing any further simplifications. The results clearly characterize the topological structure of the Weyl points and are in full agreement with the expectations of surface topological modes. Finally, full field numerical simulations are used to confirm the existence of surface states and to illustrate their extreme robustness towards lattice disorder and defects.
doi_str_mv 10.1088/1367-2630/ab9e31
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ab9e31</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5dbe1f6e30d548cdaffb37fa5b26f632</doaj_id><sourcerecordid>2430151214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-fe1f96b0bacb797de02ecf8ae6b59139091d3178afe0d9fab286aff628540ef43</originalsourceid><addsrcrecordid>eNp1kUtLxTAQhYso-Ny7DLi1mkebtksRXyC4UVyGSTLRXGpTk1zk_ntbK-rG1YThnO9MZorimNEzRtv2nAnZlFwKeg66Q8G2ir2f1vaf926xn9KKUsZazvcK9YybnozBDzkRGCzJYQx9ePEGepLW0YFBkjJkTMQPBEh-jYil9W84JB-GWTXZPrx5LfNmRII9pOwN6SFPBQ-LHQd9wqPvelA8XV89Xt6W9w83d5cX96WpmMylQ-Y6qakGo5uusUg5GtcCSl13THS0Y1awpgWH1HYONG8lOCd5W1cUXSUOiruFawOs1Bj9G8SNCuDVVyPEFwVxGqhHVVs9pUkU1NZVa-zE0aJxUGsunRR8Yp0srDGG9zWmrFZhHaevJsUrQVnNOJsT6aIyMaQU0f2kMqrmk6h552reuVpOMllOF4sP4y_zX_knbkGOyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430151214</pqid></control><display><type>article</type><title>Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ganti, Sai Sanjit ; Liu, Ting-Wei ; Semperlotti, Fabio</creator><creatorcontrib>Ganti, Sai Sanjit ; Liu, Ting-Wei ; Semperlotti, Fabio</creatorcontrib><description>Following the realization of Weyl semimetals in quantum electronic materials, classical wave analogues of Weyl materials have also been theorized and experimentally demonstrated in photonics and acoustics. Weyl points in elastic systems, however, have been a much more recent discovery. In this study, we report on the design of an elastic fully-continuum three-dimensional material that, while offering structural and load-bearing functionalities, is also capable of Weyl degeneracies and surface topologically-protected modes in a way completely analogous to its quantum mechanical counterpart. The topological characteristics of the lattice are obtained by ab initio numerical calculations without employing any further simplifications. The results clearly characterize the topological structure of the Weyl points and are in full agreement with the expectations of surface topological modes. Finally, full field numerical simulations are used to confirm the existence of surface states and to illustrate their extreme robustness towards lattice disorder and defects.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab9e31</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>3D metamaterials ; Acoustics ; Chern number ; Computer simulation ; elastic lattice ; Elastic systems ; Electronic materials ; Lattice vibration ; Load bearing elements ; Metalloids ; Physics ; Quantum mechanics ; Robustness (mathematics) ; topological states ; Topology ; Weyl points</subject><ispartof>New journal of physics, 2020-08, Vol.22 (8), p.83001</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-fe1f96b0bacb797de02ecf8ae6b59139091d3178afe0d9fab286aff628540ef43</citedby><cites>FETCH-LOGICAL-c416t-fe1f96b0bacb797de02ecf8ae6b59139091d3178afe0d9fab286aff628540ef43</cites><orcidid>0000-0002-4141-6171 ; 0000-0003-0762-9904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab9e31/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Ganti, Sai Sanjit</creatorcontrib><creatorcontrib>Liu, Ting-Wei</creatorcontrib><creatorcontrib>Semperlotti, Fabio</creatorcontrib><title>Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Following the realization of Weyl semimetals in quantum electronic materials, classical wave analogues of Weyl materials have also been theorized and experimentally demonstrated in photonics and acoustics. Weyl points in elastic systems, however, have been a much more recent discovery. In this study, we report on the design of an elastic fully-continuum three-dimensional material that, while offering structural and load-bearing functionalities, is also capable of Weyl degeneracies and surface topologically-protected modes in a way completely analogous to its quantum mechanical counterpart. The topological characteristics of the lattice are obtained by ab initio numerical calculations without employing any further simplifications. The results clearly characterize the topological structure of the Weyl points and are in full agreement with the expectations of surface topological modes. Finally, full field numerical simulations are used to confirm the existence of surface states and to illustrate their extreme robustness towards lattice disorder and defects.</description><subject>3D metamaterials</subject><subject>Acoustics</subject><subject>Chern number</subject><subject>Computer simulation</subject><subject>elastic lattice</subject><subject>Elastic systems</subject><subject>Electronic materials</subject><subject>Lattice vibration</subject><subject>Load bearing elements</subject><subject>Metalloids</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Robustness (mathematics)</subject><subject>topological states</subject><subject>Topology</subject><subject>Weyl points</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtLxTAQhYso-Ny7DLi1mkebtksRXyC4UVyGSTLRXGpTk1zk_ntbK-rG1YThnO9MZorimNEzRtv2nAnZlFwKeg66Q8G2ir2f1vaf926xn9KKUsZazvcK9YybnozBDzkRGCzJYQx9ePEGepLW0YFBkjJkTMQPBEh-jYil9W84JB-GWTXZPrx5LfNmRII9pOwN6SFPBQ-LHQd9wqPvelA8XV89Xt6W9w83d5cX96WpmMylQ-Y6qakGo5uusUg5GtcCSl13THS0Y1awpgWH1HYONG8lOCd5W1cUXSUOiruFawOs1Bj9G8SNCuDVVyPEFwVxGqhHVVs9pUkU1NZVa-zE0aJxUGsunRR8Yp0srDGG9zWmrFZhHaevJsUrQVnNOJsT6aIyMaQU0f2kMqrmk6h552reuVpOMllOF4sP4y_zX_knbkGOyA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ganti, Sai Sanjit</creator><creator>Liu, Ting-Wei</creator><creator>Semperlotti, Fabio</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4141-6171</orcidid><orcidid>https://orcid.org/0000-0003-0762-9904</orcidid></search><sort><creationdate>20200801</creationdate><title>Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice</title><author>Ganti, Sai Sanjit ; Liu, Ting-Wei ; Semperlotti, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-fe1f96b0bacb797de02ecf8ae6b59139091d3178afe0d9fab286aff628540ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D metamaterials</topic><topic>Acoustics</topic><topic>Chern number</topic><topic>Computer simulation</topic><topic>elastic lattice</topic><topic>Elastic systems</topic><topic>Electronic materials</topic><topic>Lattice vibration</topic><topic>Load bearing elements</topic><topic>Metalloids</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Robustness (mathematics)</topic><topic>topological states</topic><topic>Topology</topic><topic>Weyl points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganti, Sai Sanjit</creatorcontrib><creatorcontrib>Liu, Ting-Wei</creatorcontrib><creatorcontrib>Semperlotti, Fabio</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganti, Sai Sanjit</au><au>Liu, Ting-Wei</au><au>Semperlotti, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>83001</spage><pages>83001-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Following the realization of Weyl semimetals in quantum electronic materials, classical wave analogues of Weyl materials have also been theorized and experimentally demonstrated in photonics and acoustics. Weyl points in elastic systems, however, have been a much more recent discovery. In this study, we report on the design of an elastic fully-continuum three-dimensional material that, while offering structural and load-bearing functionalities, is also capable of Weyl degeneracies and surface topologically-protected modes in a way completely analogous to its quantum mechanical counterpart. The topological characteristics of the lattice are obtained by ab initio numerical calculations without employing any further simplifications. The results clearly characterize the topological structure of the Weyl points and are in full agreement with the expectations of surface topological modes. Finally, full field numerical simulations are used to confirm the existence of surface states and to illustrate their extreme robustness towards lattice disorder and defects.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab9e31</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4141-6171</orcidid><orcidid>https://orcid.org/0000-0003-0762-9904</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-08, Vol.22 (8), p.83001
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_ab9e31
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 3D metamaterials
Acoustics
Chern number
Computer simulation
elastic lattice
Elastic systems
Electronic materials
Lattice vibration
Load bearing elements
Metalloids
Physics
Quantum mechanics
Robustness (mathematics)
topological states
Topology
Weyl points
title Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weyl%20points%20and%20topological%20surface%20states%20in%20a%20three-dimensional%20sandwich-type%20elastic%20lattice&rft.jtitle=New%20journal%20of%20physics&rft.au=Ganti,%20Sai%20Sanjit&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=83001&rft.pages=83001-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab9e31&rft_dat=%3Cproquest_iop_j%3E2430151214%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430151214&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5dbe1f6e30d548cdaffb37fa5b26f632&rfr_iscdi=true