Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities

Controlling the flow of light on-chip is of great importance for quantum computing and optical signal processing. In this paper, we present a theoretical study to reveal the underlying physics of how to effectively trap, store and release a signal pulse, and eventually break the delay-bandwidth limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-06, Vol.22 (6), p.63030
Hauptverfasser: Xu, Zhe-Ming, Li, Chao, Wu, Jun-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 63030
container_title New journal of physics
container_volume 22
creator Xu, Zhe-Ming
Li, Chao
Wu, Jun-Fang
description Controlling the flow of light on-chip is of great importance for quantum computing and optical signal processing. In this paper, we present a theoretical study to reveal the underlying physics of how to effectively trap, store and release a signal pulse, and eventually break the delay-bandwidth limit, based on controllable EIT-like effect in dynamically tuned standing-wave cascaded nanocavities. Using this mechanism, we design a compact silicon photonic crystal system with long storing time and a delay-bandwidth product over 460, which is about two orders of magnitude greater than the reported results obtained by other methods based on static resonator system, and the trapped signal pulse can be released on demand.
doi_str_mv 10.1088/1367-2630/ab8e58
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ab8e58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a51a8510fab74bb3a47aa67659350e18</doaj_id><sourcerecordid>2415860919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c3d5f434cc8ab5777b1eba10812ab6d5d8f039326fd8ddd26e9e693c521659f83</originalsourceid><addsrcrecordid>eNp1kT1v1TAUhiNUJNrCzmiJgYW0_ogdZ0SlLZUqscBsHX-k9VWuHWy3Vf49DkGXDu1k-_g5z7H1Ns1Hgs8IlvKcMNG3VDB8Dlo6Lt80x4fS0bP9u-Yk5x3GhEhKj5v4bQmw9waVBPPswx2CYFFyk4O8nub7WGLwJiPtllivrJtgaXWlnrwt92jye1-QD8hANmCdPbQgk5ZcYEIBQjTw6It3-X3zdoQpuw__1tPm19Xlz4vv7e2P65uLr7et6TpZWsMsHzvWGSNB877vNXEa6kcJBS0st3LEbGBUjFZaa6lwgxMDM5wSwYdRstPmZvPaCDs1J7-HtKgIXv0txHSnIBVvJqeAE5Cc4BF032nNoOsBRF89jGNHVtenzTWn-PvB5aJ28SGF-nxFO8KlwAMZKoU3yqSYc3LjYSrBao1IrRmoNQO1RVRbPm8tPs7_nWE3K0qVULiiFZ7tWMkvL5Cviv8A_yeg5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415860919</pqid></control><display><type>article</type><title>Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Zhe-Ming ; Li, Chao ; Wu, Jun-Fang</creator><creatorcontrib>Xu, Zhe-Ming ; Li, Chao ; Wu, Jun-Fang</creatorcontrib><description>Controlling the flow of light on-chip is of great importance for quantum computing and optical signal processing. In this paper, we present a theoretical study to reveal the underlying physics of how to effectively trap, store and release a signal pulse, and eventually break the delay-bandwidth limit, based on controllable EIT-like effect in dynamically tuned standing-wave cascaded nanocavities. Using this mechanism, we design a compact silicon photonic crystal system with long storing time and a delay-bandwidth product over 460, which is about two orders of magnitude greater than the reported results obtained by other methods based on static resonator system, and the trapped signal pulse can be released on demand.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab8e58</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bandwidths ; Delay ; delay-bandwidth product ; electromagnetically induced transparency ; light storage ; nanocavities ; Optical communication ; photonic crystal ; Photonic crystals ; Physics ; Quantum computing ; Signal processing ; Stability ; Standing waves</subject><ispartof>New journal of physics, 2020-06, Vol.22 (6), p.63030</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c3d5f434cc8ab5777b1eba10812ab6d5d8f039326fd8ddd26e9e693c521659f83</citedby><cites>FETCH-LOGICAL-c448t-c3d5f434cc8ab5777b1eba10812ab6d5d8f039326fd8ddd26e9e693c521659f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab8e58/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Xu, Zhe-Ming</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Wu, Jun-Fang</creatorcontrib><title>Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Controlling the flow of light on-chip is of great importance for quantum computing and optical signal processing. In this paper, we present a theoretical study to reveal the underlying physics of how to effectively trap, store and release a signal pulse, and eventually break the delay-bandwidth limit, based on controllable EIT-like effect in dynamically tuned standing-wave cascaded nanocavities. Using this mechanism, we design a compact silicon photonic crystal system with long storing time and a delay-bandwidth product over 460, which is about two orders of magnitude greater than the reported results obtained by other methods based on static resonator system, and the trapped signal pulse can be released on demand.</description><subject>Bandwidths</subject><subject>Delay</subject><subject>delay-bandwidth product</subject><subject>electromagnetically induced transparency</subject><subject>light storage</subject><subject>nanocavities</subject><subject>Optical communication</subject><subject>photonic crystal</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>Signal processing</subject><subject>Stability</subject><subject>Standing waves</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kT1v1TAUhiNUJNrCzmiJgYW0_ogdZ0SlLZUqscBsHX-k9VWuHWy3Vf49DkGXDu1k-_g5z7H1Ns1Hgs8IlvKcMNG3VDB8Dlo6Lt80x4fS0bP9u-Yk5x3GhEhKj5v4bQmw9waVBPPswx2CYFFyk4O8nub7WGLwJiPtllivrJtgaXWlnrwt92jye1-QD8hANmCdPbQgk5ZcYEIBQjTw6It3-X3zdoQpuw__1tPm19Xlz4vv7e2P65uLr7et6TpZWsMsHzvWGSNB877vNXEa6kcJBS0st3LEbGBUjFZaa6lwgxMDM5wSwYdRstPmZvPaCDs1J7-HtKgIXv0txHSnIBVvJqeAE5Cc4BF032nNoOsBRF89jGNHVtenzTWn-PvB5aJ28SGF-nxFO8KlwAMZKoU3yqSYc3LjYSrBao1IrRmoNQO1RVRbPm8tPs7_nWE3K0qVULiiFZ7tWMkvL5Cviv8A_yeg5w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Xu, Zhe-Ming</creator><creator>Li, Chao</creator><creator>Wu, Jun-Fang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200601</creationdate><title>Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities</title><author>Xu, Zhe-Ming ; Li, Chao ; Wu, Jun-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c3d5f434cc8ab5777b1eba10812ab6d5d8f039326fd8ddd26e9e693c521659f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidths</topic><topic>Delay</topic><topic>delay-bandwidth product</topic><topic>electromagnetically induced transparency</topic><topic>light storage</topic><topic>nanocavities</topic><topic>Optical communication</topic><topic>photonic crystal</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>Signal processing</topic><topic>Stability</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhe-Ming</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Wu, Jun-Fang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhe-Ming</au><au>Li, Chao</au><au>Wu, Jun-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><spage>63030</spage><pages>63030-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Controlling the flow of light on-chip is of great importance for quantum computing and optical signal processing. In this paper, we present a theoretical study to reveal the underlying physics of how to effectively trap, store and release a signal pulse, and eventually break the delay-bandwidth limit, based on controllable EIT-like effect in dynamically tuned standing-wave cascaded nanocavities. Using this mechanism, we design a compact silicon photonic crystal system with long storing time and a delay-bandwidth product over 460, which is about two orders of magnitude greater than the reported results obtained by other methods based on static resonator system, and the trapped signal pulse can be released on demand.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab8e58</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-06, Vol.22 (6), p.63030
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_ab8e58
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bandwidths
Delay
delay-bandwidth product
electromagnetically induced transparency
light storage
nanocavities
Optical communication
photonic crystal
Photonic crystals
Physics
Quantum computing
Signal processing
Stability
Standing waves
title Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20trapping%20and%20releasing%20photonics%20beyond%20delay-bandwidth%20limit%20in%20cascaded%20photonic%20crystal%20nanocavities&rft.jtitle=New%20journal%20of%20physics&rft.au=Xu,%20Zhe-Ming&rft.date=2020-06-01&rft.volume=22&rft.issue=6&rft.spage=63030&rft.pages=63030-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab8e58&rft_dat=%3Cproquest_iop_j%3E2415860919%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415860919&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a51a8510fab74bb3a47aa67659350e18&rfr_iscdi=true