VanQver: the variational and adiabatically navigated quantum eigensolver

The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-05, Vol.22 (5), p.53023
Hauptverfasser: Matsuura, Shunji, Yamazaki, Takeshi, Senicourt, Valentin, Huntington, Lee, Zaribafiyan, Arman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 53023
container_title New journal of physics
container_volume 22
creator Matsuura, Shunji
Yamazaki, Takeshi
Senicourt, Valentin
Huntington, Lee
Zaribafiyan, Arman
description The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.
doi_str_mv 10.1088/1367-2630/ab8080
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ab8080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a118854f42a042af810eb38ef5a308a3</doaj_id><sourcerecordid>2404401757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHgNejZ39SLL1JkVtoSCCel1mN5uakmbbTVLov3djpHrxMMzwMvPMzEvINYU7ClJOKE-zmKUcJqglSDgho6N0-qc-JxdNswagVDI2IvMPrF_31t9H7aeN9uhLbEtXYxVhnUeYl6iDYLCqDlGN-3KFrc2jXYd1220iW65s3bgqAC7JWYFVY69-8pi8Pz2-zebx8uV5MXtYxkZI1sYossxSI4spmEQLbcBayIFp0HSKVHKeS8o4NdZoKDAV3GjG0DCaZ5CkGR-TxcDNHa7V1pcb9AflsFTfgvMrhT5cXFmF4UeZiEIwhBCFpGA1l7ZIkINEHlg3A2vr3a6zTavWrvPh-UYxAUIAzZJ-Iwxdxrum8bY4bqWgeu9Vb67qzVWD92Hkdhgp3faX-W_7Fxqyg-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404401757</pqid></control><display><type>article</type><title>VanQver: the variational and adiabatically navigated quantum eigensolver</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Matsuura, Shunji ; Yamazaki, Takeshi ; Senicourt, Valentin ; Huntington, Lee ; Zaribafiyan, Arman</creator><creatorcontrib>Matsuura, Shunji ; Yamazaki, Takeshi ; Senicourt, Valentin ; Huntington, Lee ; Zaribafiyan, Arman</creatorcontrib><description>The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab8080</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adiabatic flow ; adiabatic quantum computing ; Algorithms ; Annealing ; Clusters ; Comparative studies ; Error correction ; Excitation ; hybrid algorithm ; Physics ; quantum annealing ; quantum chemistry ; Time dependence ; variational method ; Variational methods</subject><ispartof>New journal of physics, 2020-05, Vol.22 (5), p.53023</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</citedby><cites>FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab8080/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,862,2098,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Matsuura, Shunji</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Senicourt, Valentin</creatorcontrib><creatorcontrib>Huntington, Lee</creatorcontrib><creatorcontrib>Zaribafiyan, Arman</creatorcontrib><title>VanQver: the variational and adiabatically navigated quantum eigensolver</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.</description><subject>Adiabatic flow</subject><subject>adiabatic quantum computing</subject><subject>Algorithms</subject><subject>Annealing</subject><subject>Clusters</subject><subject>Comparative studies</subject><subject>Error correction</subject><subject>Excitation</subject><subject>hybrid algorithm</subject><subject>Physics</subject><subject>quantum annealing</subject><subject>quantum chemistry</subject><subject>Time dependence</subject><subject>variational method</subject><subject>Variational methods</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kE1Lw0AQhhdRsFbvHgNejZ39SLL1JkVtoSCCel1mN5uakmbbTVLov3djpHrxMMzwMvPMzEvINYU7ClJOKE-zmKUcJqglSDgho6N0-qc-JxdNswagVDI2IvMPrF_31t9H7aeN9uhLbEtXYxVhnUeYl6iDYLCqDlGN-3KFrc2jXYd1220iW65s3bgqAC7JWYFVY69-8pi8Pz2-zebx8uV5MXtYxkZI1sYossxSI4spmEQLbcBayIFp0HSKVHKeS8o4NdZoKDAV3GjG0DCaZ5CkGR-TxcDNHa7V1pcb9AflsFTfgvMrhT5cXFmF4UeZiEIwhBCFpGA1l7ZIkINEHlg3A2vr3a6zTavWrvPh-UYxAUIAzZJ-Iwxdxrum8bY4bqWgeu9Vb67qzVWD92Hkdhgp3faX-W_7Fxqyg-Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Matsuura, Shunji</creator><creator>Yamazaki, Takeshi</creator><creator>Senicourt, Valentin</creator><creator>Huntington, Lee</creator><creator>Zaribafiyan, Arman</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200501</creationdate><title>VanQver: the variational and adiabatically navigated quantum eigensolver</title><author>Matsuura, Shunji ; Yamazaki, Takeshi ; Senicourt, Valentin ; Huntington, Lee ; Zaribafiyan, Arman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>adiabatic quantum computing</topic><topic>Algorithms</topic><topic>Annealing</topic><topic>Clusters</topic><topic>Comparative studies</topic><topic>Error correction</topic><topic>Excitation</topic><topic>hybrid algorithm</topic><topic>Physics</topic><topic>quantum annealing</topic><topic>quantum chemistry</topic><topic>Time dependence</topic><topic>variational method</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuura, Shunji</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Senicourt, Valentin</creatorcontrib><creatorcontrib>Huntington, Lee</creatorcontrib><creatorcontrib>Zaribafiyan, Arman</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuura, Shunji</au><au>Yamazaki, Takeshi</au><au>Senicourt, Valentin</au><au>Huntington, Lee</au><au>Zaribafiyan, Arman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VanQver: the variational and adiabatically navigated quantum eigensolver</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>22</volume><issue>5</issue><spage>53023</spage><pages>53023-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab8080</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-05, Vol.22 (5), p.53023
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_ab8080
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adiabatic flow
adiabatic quantum computing
Algorithms
Annealing
Clusters
Comparative studies
Error correction
Excitation
hybrid algorithm
Physics
quantum annealing
quantum chemistry
Time dependence
variational method
Variational methods
title VanQver: the variational and adiabatically navigated quantum eigensolver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VanQver:%20the%20variational%20and%20adiabatically%20navigated%20quantum%20eigensolver&rft.jtitle=New%20journal%20of%20physics&rft.au=Matsuura,%20Shunji&rft.date=2020-05-01&rft.volume=22&rft.issue=5&rft.spage=53023&rft.pages=53023-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab8080&rft_dat=%3Cproquest_iop_j%3E2404401757%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404401757&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a118854f42a042af810eb38ef5a308a3&rfr_iscdi=true