VanQver: the variational and adiabatically navigated quantum eigensolver
The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technolo...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2020-05, Vol.22 (5), p.53023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 53023 |
container_title | New journal of physics |
container_volume | 22 |
creator | Matsuura, Shunji Yamazaki, Takeshi Senicourt, Valentin Huntington, Lee Zaribafiyan, Arman |
description | The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH. |
doi_str_mv | 10.1088/1367-2630/ab8080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ab8080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a118854f42a042af810eb38ef5a308a3</doaj_id><sourcerecordid>2404401757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHgNejZ39SLL1JkVtoSCCel1mN5uakmbbTVLov3djpHrxMMzwMvPMzEvINYU7ClJOKE-zmKUcJqglSDgho6N0-qc-JxdNswagVDI2IvMPrF_31t9H7aeN9uhLbEtXYxVhnUeYl6iDYLCqDlGN-3KFrc2jXYd1220iW65s3bgqAC7JWYFVY69-8pi8Pz2-zebx8uV5MXtYxkZI1sYossxSI4spmEQLbcBayIFp0HSKVHKeS8o4NdZoKDAV3GjG0DCaZ5CkGR-TxcDNHa7V1pcb9AflsFTfgvMrhT5cXFmF4UeZiEIwhBCFpGA1l7ZIkINEHlg3A2vr3a6zTavWrvPh-UYxAUIAzZJ-Iwxdxrum8bY4bqWgeu9Vb67qzVWD92Hkdhgp3faX-W_7Fxqyg-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404401757</pqid></control><display><type>article</type><title>VanQver: the variational and adiabatically navigated quantum eigensolver</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Matsuura, Shunji ; Yamazaki, Takeshi ; Senicourt, Valentin ; Huntington, Lee ; Zaribafiyan, Arman</creator><creatorcontrib>Matsuura, Shunji ; Yamazaki, Takeshi ; Senicourt, Valentin ; Huntington, Lee ; Zaribafiyan, Arman</creatorcontrib><description>The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab8080</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adiabatic flow ; adiabatic quantum computing ; Algorithms ; Annealing ; Clusters ; Comparative studies ; Error correction ; Excitation ; hybrid algorithm ; Physics ; quantum annealing ; quantum chemistry ; Time dependence ; variational method ; Variational methods</subject><ispartof>New journal of physics, 2020-05, Vol.22 (5), p.53023</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</citedby><cites>FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab8080/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,862,2098,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Matsuura, Shunji</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Senicourt, Valentin</creatorcontrib><creatorcontrib>Huntington, Lee</creatorcontrib><creatorcontrib>Zaribafiyan, Arman</creatorcontrib><title>VanQver: the variational and adiabatically navigated quantum eigensolver</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.</description><subject>Adiabatic flow</subject><subject>adiabatic quantum computing</subject><subject>Algorithms</subject><subject>Annealing</subject><subject>Clusters</subject><subject>Comparative studies</subject><subject>Error correction</subject><subject>Excitation</subject><subject>hybrid algorithm</subject><subject>Physics</subject><subject>quantum annealing</subject><subject>quantum chemistry</subject><subject>Time dependence</subject><subject>variational method</subject><subject>Variational methods</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kE1Lw0AQhhdRsFbvHgNejZ39SLL1JkVtoSCCel1mN5uakmbbTVLov3djpHrxMMzwMvPMzEvINYU7ClJOKE-zmKUcJqglSDgho6N0-qc-JxdNswagVDI2IvMPrF_31t9H7aeN9uhLbEtXYxVhnUeYl6iDYLCqDlGN-3KFrc2jXYd1220iW65s3bgqAC7JWYFVY69-8pi8Pz2-zebx8uV5MXtYxkZI1sYossxSI4spmEQLbcBayIFp0HSKVHKeS8o4NdZoKDAV3GjG0DCaZ5CkGR-TxcDNHa7V1pcb9AflsFTfgvMrhT5cXFmF4UeZiEIwhBCFpGA1l7ZIkINEHlg3A2vr3a6zTavWrvPh-UYxAUIAzZJ-Iwxdxrum8bY4bqWgeu9Vb67qzVWD92Hkdhgp3faX-W_7Fxqyg-Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Matsuura, Shunji</creator><creator>Yamazaki, Takeshi</creator><creator>Senicourt, Valentin</creator><creator>Huntington, Lee</creator><creator>Zaribafiyan, Arman</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200501</creationdate><title>VanQver: the variational and adiabatically navigated quantum eigensolver</title><author>Matsuura, Shunji ; Yamazaki, Takeshi ; Senicourt, Valentin ; Huntington, Lee ; Zaribafiyan, Arman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-a477e1c8f90c5b4bc0ee0d02b0b19a1833d81231cecb0fa643cb22ac21d705673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>adiabatic quantum computing</topic><topic>Algorithms</topic><topic>Annealing</topic><topic>Clusters</topic><topic>Comparative studies</topic><topic>Error correction</topic><topic>Excitation</topic><topic>hybrid algorithm</topic><topic>Physics</topic><topic>quantum annealing</topic><topic>quantum chemistry</topic><topic>Time dependence</topic><topic>variational method</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuura, Shunji</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Senicourt, Valentin</creatorcontrib><creatorcontrib>Huntington, Lee</creatorcontrib><creatorcontrib>Zaribafiyan, Arman</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuura, Shunji</au><au>Yamazaki, Takeshi</au><au>Senicourt, Valentin</au><au>Huntington, Lee</au><au>Zaribafiyan, Arman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VanQver: the variational and adiabatically navigated quantum eigensolver</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>22</volume><issue>5</issue><spage>53023</spage><pages>53023-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The accelerated progress in manufacturing noisy, intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic state preparation (ASP) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard ASP method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A Hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard ASP, starting with a Hartree-Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H2, P4, and LiH.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab8080</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2020-05, Vol.22 (5), p.53023 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_iop_journals_10_1088_1367_2630_ab8080 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adiabatic flow adiabatic quantum computing Algorithms Annealing Clusters Comparative studies Error correction Excitation hybrid algorithm Physics quantum annealing quantum chemistry Time dependence variational method Variational methods |
title | VanQver: the variational and adiabatically navigated quantum eigensolver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VanQver:%20the%20variational%20and%20adiabatically%20navigated%20quantum%20eigensolver&rft.jtitle=New%20journal%20of%20physics&rft.au=Matsuura,%20Shunji&rft.date=2020-05-01&rft.volume=22&rft.issue=5&rft.spage=53023&rft.pages=53023-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab8080&rft_dat=%3Cproquest_iop_j%3E2404401757%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404401757&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a118854f42a042af810eb38ef5a308a3&rfr_iscdi=true |