Triangular color codes on trivalent graphs with flag qubits

The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-02, Vol.22 (2), p.23019, Article 023019
Hauptverfasser: Chamberland, Christopher, Kubica, Aleksander, Yoder, Theodore J, Zhu, Guanyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23019
container_title New journal of physics
container_volume 22
creator Chamberland, Christopher
Kubica, Aleksander
Yoder, Theodore J
Zhu, Guanyu
description The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide this experimental effort, we study the storage threshold of the triangular color code against circuit-level depolarizing noise. First, we adapt the Restriction Decoder to the setting of the triangular color code and to phenomenological noise. Then, we propose a fault-tolerant implementation of the stabilizer measurement circuits, which incorporates flag qubits. We show how information from flag qubits can be used in an efficient and scalable way with the Restriction Decoder to maintain the effective distance of the code. We numerically estimate the threshold of the triangular color code to be 0.2%, which is competitive with the thresholds of other topological quantum codes. We also prove that 1-flag stabilizer measurement circuits are sufficient to preserve the full code distance, which may be used to find simpler syndrome extraction circuits of the color code.
doi_str_mv 10.1088/1367-2630/ab68fd
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ab68fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_16033ca9a4c2464b9348f869c1483f13</doaj_id><sourcerecordid>2353090226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-dcbb69dc4511a6fddd05c69fa8312496577b18015d43c0f9a49ab40b9c42dd5a3</originalsourceid><addsrcrecordid>eNqNkM1v1DAQxS0EEmXpvcdIHDjA0vFHHFuc0IqPSpW4tGdrbMdbr0Kc2g4V_z3ZBi0cEOJij0bvvXn6EXJB4R0FpS4pl92WSQ6XaKUK_gk5O62e_jE_Jy9KOQBQqhg7I-9vcsRxPw-YG5eGdHx9X5o0NjXH7zj0Y232Gae70jzEeteEAffN_WxjLS_Js4BD6c9__Rty--njze7L9vrr56vdh-utE0LVrXfWSu2daClFGbz30DqpAypOmdCy7TpLFdDWC-4gaBQarQCrnWDet8g35GrN9QkPZsrxG-YfJmE0j4uU9wZzjW7oDZXAucMlwzEhhdVcqKCkdlQoHihfsl6tWVNO93NfqjmkOY9LfcN4y0EDWyhtCKwql1MpuQ-nqxTMEbc58jRHnmbFvVjerJaH3qZQXOxH159sANDyru0oXSboFrX6f_UuVqwxjbs0j3Wxvl2tMU2_y_-j1-u_yMfDZBgzzADjQLWZfOA_ATDkrWQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353090226</pqid></control><display><type>article</type><title>Triangular color codes on trivalent graphs with flag qubits</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chamberland, Christopher ; Kubica, Aleksander ; Yoder, Theodore J ; Zhu, Guanyu</creator><creatorcontrib>Chamberland, Christopher ; Kubica, Aleksander ; Yoder, Theodore J ; Zhu, Guanyu</creatorcontrib><description>The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide this experimental effort, we study the storage threshold of the triangular color code against circuit-level depolarizing noise. First, we adapt the Restriction Decoder to the setting of the triangular color code and to phenomenological noise. Then, we propose a fault-tolerant implementation of the stabilizer measurement circuits, which incorporates flag qubits. We show how information from flag qubits can be used in an efficient and scalable way with the Restriction Decoder to maintain the effective distance of the code. We numerically estimate the threshold of the triangular color code to be 0.2%, which is competitive with the thresholds of other topological quantum codes. We also prove that 1-flag stabilizer measurement circuits are sufficient to preserve the full code distance, which may be used to find simpler syndrome extraction circuits of the color code.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab68fd</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>Circuits ; Color ; Depolarization ; Dimensional tolerances ; Error correcting codes ; Error correction ; Fault tolerance ; fault-tolerant quantum error correction ; Flags ; Gates (circuits) ; Logic circuits ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; quantum error correction ; Qubits (quantum computing) ; Science &amp; Technology ; topological codes ; Topology</subject><ispartof>New journal of physics, 2020-02, Vol.22 (2), p.23019, Article 023019</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>64</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000537571100007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c448t-dcbb69dc4511a6fddd05c69fa8312496577b18015d43c0f9a49ab40b9c42dd5a3</citedby><cites>FETCH-LOGICAL-c448t-dcbb69dc4511a6fddd05c69fa8312496577b18015d43c0f9a49ab40b9c42dd5a3</cites><orcidid>0000-0003-3239-5783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab68fd/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>Chamberland, Christopher</creatorcontrib><creatorcontrib>Kubica, Aleksander</creatorcontrib><creatorcontrib>Yoder, Theodore J</creatorcontrib><creatorcontrib>Zhu, Guanyu</creatorcontrib><title>Triangular color codes on trivalent graphs with flag qubits</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>NEW J PHYS</addtitle><addtitle>New J. Phys</addtitle><description>The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide this experimental effort, we study the storage threshold of the triangular color code against circuit-level depolarizing noise. First, we adapt the Restriction Decoder to the setting of the triangular color code and to phenomenological noise. Then, we propose a fault-tolerant implementation of the stabilizer measurement circuits, which incorporates flag qubits. We show how information from flag qubits can be used in an efficient and scalable way with the Restriction Decoder to maintain the effective distance of the code. We numerically estimate the threshold of the triangular color code to be 0.2%, which is competitive with the thresholds of other topological quantum codes. We also prove that 1-flag stabilizer measurement circuits are sufficient to preserve the full code distance, which may be used to find simpler syndrome extraction circuits of the color code.</description><subject>Circuits</subject><subject>Color</subject><subject>Depolarization</subject><subject>Dimensional tolerances</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>fault-tolerant quantum error correction</subject><subject>Flags</subject><subject>Gates (circuits)</subject><subject>Logic circuits</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>quantum error correction</subject><subject>Qubits (quantum computing)</subject><subject>Science &amp; Technology</subject><subject>topological codes</subject><subject>Topology</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkM1v1DAQxS0EEmXpvcdIHDjA0vFHHFuc0IqPSpW4tGdrbMdbr0Kc2g4V_z3ZBi0cEOJij0bvvXn6EXJB4R0FpS4pl92WSQ6XaKUK_gk5O62e_jE_Jy9KOQBQqhg7I-9vcsRxPw-YG5eGdHx9X5o0NjXH7zj0Y232Gae70jzEeteEAffN_WxjLS_Js4BD6c9__Rty--njze7L9vrr56vdh-utE0LVrXfWSu2daClFGbz30DqpAypOmdCy7TpLFdDWC-4gaBQarQCrnWDet8g35GrN9QkPZsrxG-YfJmE0j4uU9wZzjW7oDZXAucMlwzEhhdVcqKCkdlQoHihfsl6tWVNO93NfqjmkOY9LfcN4y0EDWyhtCKwql1MpuQ-nqxTMEbc58jRHnmbFvVjerJaH3qZQXOxH159sANDyru0oXSboFrX6f_UuVqwxjbs0j3Wxvl2tMU2_y_-j1-u_yMfDZBgzzADjQLWZfOA_ATDkrWQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chamberland, Christopher</creator><creator>Kubica, Aleksander</creator><creator>Yoder, Theodore J</creator><creator>Zhu, Guanyu</creator><general>IOP Publishing</general><general>Iop Publishing Ltd</general><scope>O3W</scope><scope>TSCCA</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3239-5783</orcidid></search><sort><creationdate>20200201</creationdate><title>Triangular color codes on trivalent graphs with flag qubits</title><author>Chamberland, Christopher ; Kubica, Aleksander ; Yoder, Theodore J ; Zhu, Guanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-dcbb69dc4511a6fddd05c69fa8312496577b18015d43c0f9a49ab40b9c42dd5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Color</topic><topic>Depolarization</topic><topic>Dimensional tolerances</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>fault-tolerant quantum error correction</topic><topic>Flags</topic><topic>Gates (circuits)</topic><topic>Logic circuits</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>quantum error correction</topic><topic>Qubits (quantum computing)</topic><topic>Science &amp; Technology</topic><topic>topological codes</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamberland, Christopher</creatorcontrib><creatorcontrib>Kubica, Aleksander</creatorcontrib><creatorcontrib>Yoder, Theodore J</creatorcontrib><creatorcontrib>Zhu, Guanyu</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamberland, Christopher</au><au>Kubica, Aleksander</au><au>Yoder, Theodore J</au><au>Zhu, Guanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangular color codes on trivalent graphs with flag qubits</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><stitle>NEW J PHYS</stitle><addtitle>New J. Phys</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>23019</spage><pages>23019-</pages><artnum>023019</artnum><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide this experimental effort, we study the storage threshold of the triangular color code against circuit-level depolarizing noise. First, we adapt the Restriction Decoder to the setting of the triangular color code and to phenomenological noise. Then, we propose a fault-tolerant implementation of the stabilizer measurement circuits, which incorporates flag qubits. We show how information from flag qubits can be used in an efficient and scalable way with the Restriction Decoder to maintain the effective distance of the code. We numerically estimate the threshold of the triangular color code to be 0.2%, which is competitive with the thresholds of other topological quantum codes. We also prove that 1-flag stabilizer measurement circuits are sufficient to preserve the full code distance, which may be used to find simpler syndrome extraction circuits of the color code.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab68fd</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3239-5783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-02, Vol.22 (2), p.23019, Article 023019
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_ab68fd
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Circuits
Color
Depolarization
Dimensional tolerances
Error correcting codes
Error correction
Fault tolerance
fault-tolerant quantum error correction
Flags
Gates (circuits)
Logic circuits
Physical Sciences
Physics
Physics, Multidisciplinary
quantum error correction
Qubits (quantum computing)
Science & Technology
topological codes
Topology
title Triangular color codes on trivalent graphs with flag qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangular%20color%20codes%20on%20trivalent%20graphs%20with%20flag%20qubits&rft.jtitle=New%20journal%20of%20physics&rft.au=Chamberland,%20Christopher&rft.date=2020-02-01&rft.volume=22&rft.issue=2&rft.spage=23019&rft.pages=23019-&rft.artnum=023019&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab68fd&rft_dat=%3Cproquest_iop_j%3E2353090226%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353090226&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_16033ca9a4c2464b9348f869c1483f13&rfr_iscdi=true