Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories

We report on a source of heralded narrowband ( 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2016-12, Vol.18 (12), p.123013
Hauptverfasser: Rieländer, Daniel, Lenhard, Andreas, Mazzera, Margherita, Riedmatten, Hugues de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 123013
container_title New journal of physics
container_volume 18
creator Rieländer, Daniel
Lenhard, Andreas
Mazzera, Margherita
Riedmatten, Hugues de
description We report on a source of heralded narrowband ( 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW−1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.
doi_str_mv 10.1088/1367-2630/aa4f38
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_aa4f38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7afbf762186b418a83beedd9eea25137</doaj_id><sourcerecordid>2312925927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-c84dd01536b64f3e18a3877ca1c7ccfeda0d721fb4767c205411eddc474970003</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1JoPnovUdBLz3UjUayLe2xLE0bCPTSXnoRY2mU1WJbjuRNyb-vti5pDiUwMMPLM-8MM1X1FvhH4FpfgexULTrJrxAbL_Wr6uxJOnlWv67Oc95zDqCFOKt-bvEhLI-Mph1OlhxbaCAbR7ajhIMrQg7T3UBs3sUlTpn5mFiew1T_wgdiOQ6hIAsuxO4POC2HkY00xhQoX1anHodMb_7mi-rH9efv26_17bcvN9tPt7VtoV1qqxvnOLSy67uyOIFGqZWyCFZZ68khd0qA7xvVKSt42wCQc7ZRzUZxzuVFdbP6uoh7M6cwYno0EYP5I8R0ZzAtwQ5kFPreq06A7vqmDNKyp-K1IULRglTF693qNad4f6C8mH08pKmsb4QEsRHtRhwpvlI2xZwT-aepwM3xG-Z4bnM8t1m_UVo-rC0hzv88X8Df_wef9rOBQosSkoM0s_PyN625mRI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312925927</pqid></control><display><type>article</type><title>Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rieländer, Daniel ; Lenhard, Andreas ; Mazzera, Margherita ; Riedmatten, Hugues de</creator><creatorcontrib>Rieländer, Daniel ; Lenhard, Andreas ; Mazzera, Margherita ; Riedmatten, Hugues de</creatorcontrib><description>We report on a source of heralded narrowband ( 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW−1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aa4f38</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>42.65.Lm ; Autocorrelation functions ; cavity enhanced SPDC ; Diodes ; Doped crystals ; heralded single photons ; Narrowband ; narrowband photons ; Optical transition ; photon pair source ; Photons ; Physics ; Praseodymium ; Quantum phenomena ; Solid state ; solid state quantum memory ; Telecommunications</subject><ispartof>New journal of physics, 2016-12, Vol.18 (12), p.123013</ispartof><rights>2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-c84dd01536b64f3e18a3877ca1c7ccfeda0d721fb4767c205411eddc474970003</citedby><cites>FETCH-LOGICAL-c515t-c84dd01536b64f3e18a3877ca1c7ccfeda0d721fb4767c205411eddc474970003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aa4f38/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,27929,27930,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>Rieländer, Daniel</creatorcontrib><creatorcontrib>Lenhard, Andreas</creatorcontrib><creatorcontrib>Mazzera, Margherita</creatorcontrib><creatorcontrib>Riedmatten, Hugues de</creatorcontrib><title>Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We report on a source of heralded narrowband ( 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW−1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.</description><subject>42.65.Lm</subject><subject>Autocorrelation functions</subject><subject>cavity enhanced SPDC</subject><subject>Diodes</subject><subject>Doped crystals</subject><subject>heralded single photons</subject><subject>Narrowband</subject><subject>narrowband photons</subject><subject>Optical transition</subject><subject>photon pair source</subject><subject>Photons</subject><subject>Physics</subject><subject>Praseodymium</subject><subject>Quantum phenomena</subject><subject>Solid state</subject><subject>solid state quantum memory</subject><subject>Telecommunications</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1JoPnovUdBLz3UjUayLe2xLE0bCPTSXnoRY2mU1WJbjuRNyb-vti5pDiUwMMPLM-8MM1X1FvhH4FpfgexULTrJrxAbL_Wr6uxJOnlWv67Oc95zDqCFOKt-bvEhLI-Mph1OlhxbaCAbR7ajhIMrQg7T3UBs3sUlTpn5mFiew1T_wgdiOQ6hIAsuxO4POC2HkY00xhQoX1anHodMb_7mi-rH9efv26_17bcvN9tPt7VtoV1qqxvnOLSy67uyOIFGqZWyCFZZ68khd0qA7xvVKSt42wCQc7ZRzUZxzuVFdbP6uoh7M6cwYno0EYP5I8R0ZzAtwQ5kFPreq06A7vqmDNKyp-K1IULRglTF693qNad4f6C8mH08pKmsb4QEsRHtRhwpvlI2xZwT-aepwM3xG-Z4bnM8t1m_UVo-rC0hzv88X8Df_wef9rOBQosSkoM0s_PyN625mRI</recordid><startdate>20161212</startdate><enddate>20161212</enddate><creator>Rieländer, Daniel</creator><creator>Lenhard, Andreas</creator><creator>Mazzera, Margherita</creator><creator>Riedmatten, Hugues de</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20161212</creationdate><title>Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories</title><author>Rieländer, Daniel ; Lenhard, Andreas ; Mazzera, Margherita ; Riedmatten, Hugues de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-c84dd01536b64f3e18a3877ca1c7ccfeda0d721fb4767c205411eddc474970003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>42.65.Lm</topic><topic>Autocorrelation functions</topic><topic>cavity enhanced SPDC</topic><topic>Diodes</topic><topic>Doped crystals</topic><topic>heralded single photons</topic><topic>Narrowband</topic><topic>narrowband photons</topic><topic>Optical transition</topic><topic>photon pair source</topic><topic>Photons</topic><topic>Physics</topic><topic>Praseodymium</topic><topic>Quantum phenomena</topic><topic>Solid state</topic><topic>solid state quantum memory</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieländer, Daniel</creatorcontrib><creatorcontrib>Lenhard, Andreas</creatorcontrib><creatorcontrib>Mazzera, Margherita</creatorcontrib><creatorcontrib>Riedmatten, Hugues de</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieländer, Daniel</au><au>Lenhard, Andreas</au><au>Mazzera, Margherita</au><au>Riedmatten, Hugues de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2016-12-12</date><risdate>2016</risdate><volume>18</volume><issue>12</issue><spage>123013</spage><pages>123013-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We report on a source of heralded narrowband ( 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW−1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aa4f38</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2016-12, Vol.18 (12), p.123013
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_aa4f38
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 42.65.Lm
Autocorrelation functions
cavity enhanced SPDC
Diodes
Doped crystals
heralded single photons
Narrowband
narrowband photons
Optical transition
photon pair source
Photons
Physics
Praseodymium
Quantum phenomena
Solid state
solid state quantum memory
Telecommunications
title Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity%20enhanced%20telecom%20heralded%20single%20photons%20for%20spin-wave%20solid%20state%20quantum%20memories&rft.jtitle=New%20journal%20of%20physics&rft.au=Riel%C3%A4nder,%20Daniel&rft.date=2016-12-12&rft.volume=18&rft.issue=12&rft.spage=123013&rft.pages=123013-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aa4f38&rft_dat=%3Cproquest_iop_j%3E2312925927%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312925927&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_7afbf762186b418a83beedd9eea25137&rfr_iscdi=true