A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study

In this paper, we present a novel concept for a planar soft robotic module actuated by smart artificial muscles. The structure consists of a flexible backbone capable of continuously bending along a plane, and having a rigid plate connected to its top. The actuation is provided by an antagonist-agon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2022-11, Vol.31 (11), p.114002
Hauptverfasser: Baltes, Matthias, Kunze, Julian, Prechtl, Johannes, Seelecke, Stefan, Rizzello, Gianluca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 114002
container_title Smart materials and structures
container_volume 31
creator Baltes, Matthias
Kunze, Julian
Prechtl, Johannes
Seelecke, Stefan
Rizzello, Gianluca
description In this paper, we present a novel concept for a planar soft robotic module actuated by smart artificial muscles. The structure consists of a flexible backbone capable of continuously bending along a plane, and having a rigid plate connected to its top. The actuation is provided by an antagonist-agonist pair of artificial muscle fibers, consisting of silicone-based rolled dielectric elastomer actuator (RDEA) membranes connected to the rigid top plate. When actuated via high voltage, the RDEAs expand and, in turn, cause the structure to bend along a desired direction. The novel prototype concept is described in detail first, and systematic parameter studies are conducted afterwards by means of a physics-based model. Then, an experimental prototype is manufactured and tested, with the aim of validating the dependency of the bending angle performance on the system design parameters. We demonstrate that the bending angle is strongly affected by the choice of the flexible beam geometry, as well as the RDEAs mounting points. It is found that, for some combinations of parameters, the buckling instability of the beam can be suitably triggered by the RDEAs, resulting in large bending angles up to 25°. This feature also allows to keep the robot deformed without supplying any electric power. In contrast, parameters corresponding to mono-stable configurations result in a maximum bending angle of 11° only.
doi_str_mv 10.1088/1361-665X/ac96df
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_665X_ac96df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsac96df</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-6f100e4e27b77b1c2caf576925738e6fa62449e0597a2d424092d54c64175a353</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7uXWbpYqr5ajJ1Nwx-wYAbBXchTVLN0DYlSYXxH_ivTR1xJcKDB4dzH48LwDlGlxgtl1eYclxwXr5cKV1x0xyA2S86BDNUcVZgQfgxOIlxixDGS4pn4HMFa1fEpOrWwuibBIOvfXIa1rY337TzZszLBPdue1jvYHSt077PyNnW6hSybVsVk-9sgEqnUSUf4jU0NrrXfgH1mwoZ2-A-VHI-E9UbOGTY2UxhTKPZnYKjRrXRnv3sOXi-vXla3xebx7uH9WpTaIppKniDEbLMElELUWNNtGpKwStSCrq0vFGcMFZZVFZCEcMIQxUxJdOcYVEqWtI5QPu7OvgYg23kEFynwk5iJKcq5dSbnHqT-ypzZLGPOD_IrR9Dnx_8T7_4Q49dlBRLPA1DiMghq1_b_4XW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Baltes, Matthias ; Kunze, Julian ; Prechtl, Johannes ; Seelecke, Stefan ; Rizzello, Gianluca</creator><creatorcontrib>Baltes, Matthias ; Kunze, Julian ; Prechtl, Johannes ; Seelecke, Stefan ; Rizzello, Gianluca</creatorcontrib><description>In this paper, we present a novel concept for a planar soft robotic module actuated by smart artificial muscles. The structure consists of a flexible backbone capable of continuously bending along a plane, and having a rigid plate connected to its top. The actuation is provided by an antagonist-agonist pair of artificial muscle fibers, consisting of silicone-based rolled dielectric elastomer actuator (RDEA) membranes connected to the rigid top plate. When actuated via high voltage, the RDEAs expand and, in turn, cause the structure to bend along a desired direction. The novel prototype concept is described in detail first, and systematic parameter studies are conducted afterwards by means of a physics-based model. Then, an experimental prototype is manufactured and tested, with the aim of validating the dependency of the bending angle performance on the system design parameters. We demonstrate that the bending angle is strongly affected by the choice of the flexible beam geometry, as well as the RDEAs mounting points. It is found that, for some combinations of parameters, the buckling instability of the beam can be suitably triggered by the RDEAs, resulting in large bending angles up to 25°. This feature also allows to keep the robot deformed without supplying any electric power. In contrast, parameters corresponding to mono-stable configurations result in a maximum bending angle of 11° only.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ac96df</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bendable module ; bi-stability ; characterization ; dielectric elastomer ; dielectric elastomer actuator ; soft robotics</subject><ispartof>Smart materials and structures, 2022-11, Vol.31 (11), p.114002</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-6f100e4e27b77b1c2caf576925738e6fa62449e0597a2d424092d54c64175a353</citedby><cites>FETCH-LOGICAL-c313t-6f100e4e27b77b1c2caf576925738e6fa62449e0597a2d424092d54c64175a353</cites><orcidid>0000-0002-0943-1363 ; 0000-0002-5235-3129 ; 0000-0002-7017-698X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/ac96df/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Baltes, Matthias</creatorcontrib><creatorcontrib>Kunze, Julian</creatorcontrib><creatorcontrib>Prechtl, Johannes</creatorcontrib><creatorcontrib>Seelecke, Stefan</creatorcontrib><creatorcontrib>Rizzello, Gianluca</creatorcontrib><title>A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In this paper, we present a novel concept for a planar soft robotic module actuated by smart artificial muscles. The structure consists of a flexible backbone capable of continuously bending along a plane, and having a rigid plate connected to its top. The actuation is provided by an antagonist-agonist pair of artificial muscle fibers, consisting of silicone-based rolled dielectric elastomer actuator (RDEA) membranes connected to the rigid top plate. When actuated via high voltage, the RDEAs expand and, in turn, cause the structure to bend along a desired direction. The novel prototype concept is described in detail first, and systematic parameter studies are conducted afterwards by means of a physics-based model. Then, an experimental prototype is manufactured and tested, with the aim of validating the dependency of the bending angle performance on the system design parameters. We demonstrate that the bending angle is strongly affected by the choice of the flexible beam geometry, as well as the RDEAs mounting points. It is found that, for some combinations of parameters, the buckling instability of the beam can be suitably triggered by the RDEAs, resulting in large bending angles up to 25°. This feature also allows to keep the robot deformed without supplying any electric power. In contrast, parameters corresponding to mono-stable configurations result in a maximum bending angle of 11° only.</description><subject>bendable module</subject><subject>bi-stability</subject><subject>characterization</subject><subject>dielectric elastomer</subject><subject>dielectric elastomer actuator</subject><subject>soft robotics</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7uXWbpYqr5ajJ1Nwx-wYAbBXchTVLN0DYlSYXxH_ivTR1xJcKDB4dzH48LwDlGlxgtl1eYclxwXr5cKV1x0xyA2S86BDNUcVZgQfgxOIlxixDGS4pn4HMFa1fEpOrWwuibBIOvfXIa1rY337TzZszLBPdue1jvYHSt077PyNnW6hSybVsVk-9sgEqnUSUf4jU0NrrXfgH1mwoZ2-A-VHI-E9UbOGTY2UxhTKPZnYKjRrXRnv3sOXi-vXla3xebx7uH9WpTaIppKniDEbLMElELUWNNtGpKwStSCrq0vFGcMFZZVFZCEcMIQxUxJdOcYVEqWtI5QPu7OvgYg23kEFynwk5iJKcq5dSbnHqT-ypzZLGPOD_IrR9Dnx_8T7_4Q49dlBRLPA1DiMghq1_b_4XW</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Baltes, Matthias</creator><creator>Kunze, Julian</creator><creator>Prechtl, Johannes</creator><creator>Seelecke, Stefan</creator><creator>Rizzello, Gianluca</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0943-1363</orcidid><orcidid>https://orcid.org/0000-0002-5235-3129</orcidid><orcidid>https://orcid.org/0000-0002-7017-698X</orcidid></search><sort><creationdate>20221101</creationdate><title>A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study</title><author>Baltes, Matthias ; Kunze, Julian ; Prechtl, Johannes ; Seelecke, Stefan ; Rizzello, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-6f100e4e27b77b1c2caf576925738e6fa62449e0597a2d424092d54c64175a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bendable module</topic><topic>bi-stability</topic><topic>characterization</topic><topic>dielectric elastomer</topic><topic>dielectric elastomer actuator</topic><topic>soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltes, Matthias</creatorcontrib><creatorcontrib>Kunze, Julian</creatorcontrib><creatorcontrib>Prechtl, Johannes</creatorcontrib><creatorcontrib>Seelecke, Stefan</creatorcontrib><creatorcontrib>Rizzello, Gianluca</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltes, Matthias</au><au>Kunze, Julian</au><au>Prechtl, Johannes</au><au>Seelecke, Stefan</au><au>Rizzello, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>31</volume><issue>11</issue><spage>114002</spage><pages>114002-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In this paper, we present a novel concept for a planar soft robotic module actuated by smart artificial muscles. The structure consists of a flexible backbone capable of continuously bending along a plane, and having a rigid plate connected to its top. The actuation is provided by an antagonist-agonist pair of artificial muscle fibers, consisting of silicone-based rolled dielectric elastomer actuator (RDEA) membranes connected to the rigid top plate. When actuated via high voltage, the RDEAs expand and, in turn, cause the structure to bend along a desired direction. The novel prototype concept is described in detail first, and systematic parameter studies are conducted afterwards by means of a physics-based model. Then, an experimental prototype is manufactured and tested, with the aim of validating the dependency of the bending angle performance on the system design parameters. We demonstrate that the bending angle is strongly affected by the choice of the flexible beam geometry, as well as the RDEAs mounting points. It is found that, for some combinations of parameters, the buckling instability of the beam can be suitably triggered by the RDEAs, resulting in large bending angles up to 25°. This feature also allows to keep the robot deformed without supplying any electric power. In contrast, parameters corresponding to mono-stable configurations result in a maximum bending angle of 11° only.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ac96df</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0943-1363</orcidid><orcidid>https://orcid.org/0000-0002-5235-3129</orcidid><orcidid>https://orcid.org/0000-0002-7017-698X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2022-11, Vol.31 (11), p.114002
issn 0964-1726
1361-665X
language eng
recordid cdi_iop_journals_10_1088_1361_665X_ac96df
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects bendable module
bi-stability
characterization
dielectric elastomer
dielectric elastomer actuator
soft robotics
title A bi-stable soft robotic bendable module driven by silicone dielectric elastomer actuators: design, characterization, and parameter study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi-stable%20soft%20robotic%20bendable%20module%20driven%20by%20silicone%20dielectric%20elastomer%20actuators:%20design,%20characterization,%20and%20parameter%20study&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Baltes,%20Matthias&rft.date=2022-11-01&rft.volume=31&rft.issue=11&rft.spage=114002&rft.pages=114002-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ac96df&rft_dat=%3Ciop_cross%3Esmsac96df%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true