Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model

With the rise of Internet-of-Things and connected devices, the need for self-powered wireless sensor nodes is ever increasing. One promising technology for self-powered sensor nodes in noisy environments is acoustic energy harvesting: deriving energy from ambient sound. Existing acoustic energy harv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2019-05, Vol.28 (5), p.55032
Hauptverfasser: Monroe, Nathan M, Lang, Jeffrey H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55032
container_title Smart materials and structures
container_volume 28
creator Monroe, Nathan M
Lang, Jeffrey H
description With the rise of Internet-of-Things and connected devices, the need for self-powered wireless sensor nodes is ever increasing. One promising technology for self-powered sensor nodes in noisy environments is acoustic energy harvesting: deriving energy from ambient sound. Existing acoustic energy harvesters are typically based on resonant structures, yielding narrowband, and therefore low-energy, collection from broadband noise sources. In addition, existing acoustic energy harvesters tend to exhibit MEMS-scale sizes, with consequently low power outputs. This two-part work addresses the size and bandwidth of such harvesters. A large-scale acoustic energy harvester is developed, based on piezoelectric PVDF (polyvinylidene fluoride) film 100 cm2 in size. The harvester is designed to minimize reactive impedance, allowing for circuit loading for broadband energy harvesting in Part II of this paper. An energy-based dynamic analysis of the harvester driven by an acoustic source yields an equivalent circuit model and subsequently a Thévenin equivalent model of the harvester. The model is validated by experiments including acoustic and electric measurements, laser Doppler vibrometry, and finite element analysis. It is used to develop loadings in Part II.
doi_str_mv 10.1088/1361-665X/ab114a
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_665X_ab114a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsab114a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-80d05d931cb5a3a06d8c2e323be234fb15692b7e20b661a4575b2ddb9806341d3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKt7l3mAjs1JZtKMOy1qCwU3Cu5CLqfTKdOZkkwL9elNGXHn6sDPfzl8hNwDewCm1BSEhEzK4mtqLEBuLsjoT7okI1bKPIMZl9fkJsYtYwBKwIjsn0NnvDWtn9DGhAppdKZBalx3iH3tKLYYqhPdmHDEJLQVPdaGxlPbbzDW3-gpNuj6UKcYbVLXI10-0MVgx0B9clUtTQN013lsbsnV2jQR737vmHy-vnzMF9nq_W05f1pljivWZ4p5VvhSgLOFEYZJrxxHwYVFLvK1hUKW3M6QMyslmLyYFZZ7b0vFpMjBizFhQ68LXYwB13of6p0JJw1Mn4npMx59xqMHYikyGSJ1t9fb7hDa9OD_9h-acm4z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model</title><source>Institute of Physics Journals</source><creator>Monroe, Nathan M ; Lang, Jeffrey H</creator><creatorcontrib>Monroe, Nathan M ; Lang, Jeffrey H</creatorcontrib><description>With the rise of Internet-of-Things and connected devices, the need for self-powered wireless sensor nodes is ever increasing. One promising technology for self-powered sensor nodes in noisy environments is acoustic energy harvesting: deriving energy from ambient sound. Existing acoustic energy harvesters are typically based on resonant structures, yielding narrowband, and therefore low-energy, collection from broadband noise sources. In addition, existing acoustic energy harvesters tend to exhibit MEMS-scale sizes, with consequently low power outputs. This two-part work addresses the size and bandwidth of such harvesters. A large-scale acoustic energy harvester is developed, based on piezoelectric PVDF (polyvinylidene fluoride) film 100 cm2 in size. The harvester is designed to minimize reactive impedance, allowing for circuit loading for broadband energy harvesting in Part II of this paper. An energy-based dynamic analysis of the harvester driven by an acoustic source yields an equivalent circuit model and subsequently a Thévenin equivalent model of the harvester. The model is validated by experiments including acoustic and electric measurements, laser Doppler vibrometry, and finite element analysis. It is used to develop loadings in Part II.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ab114a</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>acoustic energy harvesting ; broadband energy harvesting ; negative capacitance ; piezoelectric ; PVDF</subject><ispartof>Smart materials and structures, 2019-05, Vol.28 (5), p.55032</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-80d05d931cb5a3a06d8c2e323be234fb15692b7e20b661a4575b2ddb9806341d3</citedby><cites>FETCH-LOGICAL-c280t-80d05d931cb5a3a06d8c2e323be234fb15692b7e20b661a4575b2ddb9806341d3</cites><orcidid>0000-0002-3355-7281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/ab114a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Monroe, Nathan M</creatorcontrib><creatorcontrib>Lang, Jeffrey H</creatorcontrib><title>Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>With the rise of Internet-of-Things and connected devices, the need for self-powered wireless sensor nodes is ever increasing. One promising technology for self-powered sensor nodes in noisy environments is acoustic energy harvesting: deriving energy from ambient sound. Existing acoustic energy harvesters are typically based on resonant structures, yielding narrowband, and therefore low-energy, collection from broadband noise sources. In addition, existing acoustic energy harvesters tend to exhibit MEMS-scale sizes, with consequently low power outputs. This two-part work addresses the size and bandwidth of such harvesters. A large-scale acoustic energy harvester is developed, based on piezoelectric PVDF (polyvinylidene fluoride) film 100 cm2 in size. The harvester is designed to minimize reactive impedance, allowing for circuit loading for broadband energy harvesting in Part II of this paper. An energy-based dynamic analysis of the harvester driven by an acoustic source yields an equivalent circuit model and subsequently a Thévenin equivalent model of the harvester. The model is validated by experiments including acoustic and electric measurements, laser Doppler vibrometry, and finite element analysis. It is used to develop loadings in Part II.</description><subject>acoustic energy harvesting</subject><subject>broadband energy harvesting</subject><subject>negative capacitance</subject><subject>piezoelectric</subject><subject>PVDF</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKt7l3mAjs1JZtKMOy1qCwU3Cu5CLqfTKdOZkkwL9elNGXHn6sDPfzl8hNwDewCm1BSEhEzK4mtqLEBuLsjoT7okI1bKPIMZl9fkJsYtYwBKwIjsn0NnvDWtn9DGhAppdKZBalx3iH3tKLYYqhPdmHDEJLQVPdaGxlPbbzDW3-gpNuj6UKcYbVLXI10-0MVgx0B9clUtTQN013lsbsnV2jQR737vmHy-vnzMF9nq_W05f1pljivWZ4p5VvhSgLOFEYZJrxxHwYVFLvK1hUKW3M6QMyslmLyYFZZ7b0vFpMjBizFhQ68LXYwB13of6p0JJw1Mn4npMx59xqMHYikyGSJ1t9fb7hDa9OD_9h-acm4z</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Monroe, Nathan M</creator><creator>Lang, Jeffrey H</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3355-7281</orcidid></search><sort><creationdate>20190501</creationdate><title>Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model</title><author>Monroe, Nathan M ; Lang, Jeffrey H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-80d05d931cb5a3a06d8c2e323be234fb15692b7e20b661a4575b2ddb9806341d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acoustic energy harvesting</topic><topic>broadband energy harvesting</topic><topic>negative capacitance</topic><topic>piezoelectric</topic><topic>PVDF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Nathan M</creatorcontrib><creatorcontrib>Lang, Jeffrey H</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Nathan M</au><au>Lang, Jeffrey H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>28</volume><issue>5</issue><spage>55032</spage><pages>55032-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>With the rise of Internet-of-Things and connected devices, the need for self-powered wireless sensor nodes is ever increasing. One promising technology for self-powered sensor nodes in noisy environments is acoustic energy harvesting: deriving energy from ambient sound. Existing acoustic energy harvesters are typically based on resonant structures, yielding narrowband, and therefore low-energy, collection from broadband noise sources. In addition, existing acoustic energy harvesters tend to exhibit MEMS-scale sizes, with consequently low power outputs. This two-part work addresses the size and bandwidth of such harvesters. A large-scale acoustic energy harvester is developed, based on piezoelectric PVDF (polyvinylidene fluoride) film 100 cm2 in size. The harvester is designed to minimize reactive impedance, allowing for circuit loading for broadband energy harvesting in Part II of this paper. An energy-based dynamic analysis of the harvester driven by an acoustic source yields an equivalent circuit model and subsequently a Thévenin equivalent model of the harvester. The model is validated by experiments including acoustic and electric measurements, laser Doppler vibrometry, and finite element analysis. It is used to develop loadings in Part II.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ab114a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3355-7281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2019-05, Vol.28 (5), p.55032
issn 0964-1726
1361-665X
language eng
recordid cdi_iop_journals_10_1088_1361_665X_ab114a
source Institute of Physics Journals
subjects acoustic energy harvesting
broadband energy harvesting
negative capacitance
piezoelectric
PVDF
title Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband,%20large%20scale%20acoustic%20energy%20harvesting%20via%20synthesized%20electrical%20load:%20I.%20Harvester%20design%20and%20model&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Monroe,%20Nathan%20M&rft.date=2019-05-01&rft.volume=28&rft.issue=5&rft.spage=55032&rft.pages=55032-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ab114a&rft_dat=%3Ciop_cross%3Esmsab114a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true