Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers
This paper proposes a nondestructive method to evaluate the health status of resistance spot-welded (RSW) joint under service load using lead zirconate titanate (PZT) active sensing system, in which the PZT transducers were used as both actuator and sensor. The physical principle of the approach was...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2017-03, Vol.26 (3), p.35059 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35059 |
container_title | Smart materials and structures |
container_volume | 26 |
creator | Yao, Ping Zheng, Botong Dawood, Mina Huo, Linsheng Song, Gangbing |
description | This paper proposes a nondestructive method to evaluate the health status of resistance spot-welded (RSW) joint under service load using lead zirconate titanate (PZT) active sensing system, in which the PZT transducers were used as both actuator and sensor. The physical principle of the approach was validated through a numerical analysis showing that an opening between the faying faces at the welded joint occurred under tension load. The opening decreased the contact area hence reduced the amplitude of the stress wave received by the PZT sensor. Therefore, by comparing the energy index of the signals before and after the loading, the health condition of the joint can be evaluated. Five ST14 steel single lap joint specimens were tested under tension load while being monitored by the PZT sensing system and digital image correlation (DIC) system in real time. The data obtained from the DIC system validated the numerical results. By comparing the energy index of the signal obtained from the PZT sensing system before and after unloading, it was concluded that the RSW joint was intact after being loaded to the service load. The proposed method is promising in evaluating the health condition of RSW joint nondestructively. |
doi_str_mv | 10.1088/1361-665X/aa5d39 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_665X_aa5d39</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsaa5d39</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-6b604c308675d9b0e94c9ddbc1ffe2fb46fe53ad80ab4e58ca07aa20a35d25d43</originalsourceid><addsrcrecordid>eNp9kM1LxDAUxIMouK7ePeamgnWTpsm2R1n8ggVFVhAvIU1eJEvbLEmq6F9v64on8fSGx8ww_BA6puSCkrKcUSZoJgR_ninFDat20OT3tYsmpBJFRue52EcHMa4JobRkdILaR1ANTq4F3PrOJR9c94q9xXHjU_YOjQGD1951KeK-MxBwhPDmNODGK4P7ONobGOSnC9p3KsHQltS3OH14WZ3hFFQXTa8hxEO0Z1UT4ejnTtHT9dVqcZst72_uFpfLTDOap0zUghSakVLMualqAlWhK2NqTa2F3NaFsMCZMiVRdQG81IrMlcqJYtzk3BRsisi2VwcfYwArN8G1KnxISuSIS45s5MhGbnENkfNtxPmNXPs-dMPA_-wnf9hjG2UuJJOEccIruTGWfQFeeXwm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers</title><source>Institute of Physics Journals</source><creator>Yao, Ping ; Zheng, Botong ; Dawood, Mina ; Huo, Linsheng ; Song, Gangbing</creator><creatorcontrib>Yao, Ping ; Zheng, Botong ; Dawood, Mina ; Huo, Linsheng ; Song, Gangbing</creatorcontrib><description>This paper proposes a nondestructive method to evaluate the health status of resistance spot-welded (RSW) joint under service load using lead zirconate titanate (PZT) active sensing system, in which the PZT transducers were used as both actuator and sensor. The physical principle of the approach was validated through a numerical analysis showing that an opening between the faying faces at the welded joint occurred under tension load. The opening decreased the contact area hence reduced the amplitude of the stress wave received by the PZT sensor. Therefore, by comparing the energy index of the signals before and after the loading, the health condition of the joint can be evaluated. Five ST14 steel single lap joint specimens were tested under tension load while being monitored by the PZT sensing system and digital image correlation (DIC) system in real time. The data obtained from the DIC system validated the numerical results. By comparing the energy index of the signal obtained from the PZT sensing system before and after unloading, it was concluded that the RSW joint was intact after being loaded to the service load. The proposed method is promising in evaluating the health condition of RSW joint nondestructively.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/aa5d39</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>active sensing ; DIC (digital image correlation) ; FEM (finite element method) ; PZT (lead zirconate titanate) ; RSW (resistance spot welding)</subject><ispartof>Smart materials and structures, 2017-03, Vol.26 (3), p.35059</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-6b604c308675d9b0e94c9ddbc1ffe2fb46fe53ad80ab4e58ca07aa20a35d25d43</citedby><cites>FETCH-LOGICAL-c312t-6b604c308675d9b0e94c9ddbc1ffe2fb46fe53ad80ab4e58ca07aa20a35d25d43</cites><orcidid>0000-0001-7719-1501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/aa5d39/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Yao, Ping</creatorcontrib><creatorcontrib>Zheng, Botong</creatorcontrib><creatorcontrib>Dawood, Mina</creatorcontrib><creatorcontrib>Huo, Linsheng</creatorcontrib><creatorcontrib>Song, Gangbing</creatorcontrib><title>Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>This paper proposes a nondestructive method to evaluate the health status of resistance spot-welded (RSW) joint under service load using lead zirconate titanate (PZT) active sensing system, in which the PZT transducers were used as both actuator and sensor. The physical principle of the approach was validated through a numerical analysis showing that an opening between the faying faces at the welded joint occurred under tension load. The opening decreased the contact area hence reduced the amplitude of the stress wave received by the PZT sensor. Therefore, by comparing the energy index of the signals before and after the loading, the health condition of the joint can be evaluated. Five ST14 steel single lap joint specimens were tested under tension load while being monitored by the PZT sensing system and digital image correlation (DIC) system in real time. The data obtained from the DIC system validated the numerical results. By comparing the energy index of the signal obtained from the PZT sensing system before and after unloading, it was concluded that the RSW joint was intact after being loaded to the service load. The proposed method is promising in evaluating the health condition of RSW joint nondestructively.</description><subject>active sensing</subject><subject>DIC (digital image correlation)</subject><subject>FEM (finite element method)</subject><subject>PZT (lead zirconate titanate)</subject><subject>RSW (resistance spot welding)</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAUxIMouK7ePeamgnWTpsm2R1n8ggVFVhAvIU1eJEvbLEmq6F9v64on8fSGx8ww_BA6puSCkrKcUSZoJgR_ninFDat20OT3tYsmpBJFRue52EcHMa4JobRkdILaR1ANTq4F3PrOJR9c94q9xXHjU_YOjQGD1951KeK-MxBwhPDmNODGK4P7ONobGOSnC9p3KsHQltS3OH14WZ3hFFQXTa8hxEO0Z1UT4ejnTtHT9dVqcZst72_uFpfLTDOap0zUghSakVLMualqAlWhK2NqTa2F3NaFsMCZMiVRdQG81IrMlcqJYtzk3BRsisi2VwcfYwArN8G1KnxISuSIS45s5MhGbnENkfNtxPmNXPs-dMPA_-wnf9hjG2UuJJOEccIruTGWfQFeeXwm</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Yao, Ping</creator><creator>Zheng, Botong</creator><creator>Dawood, Mina</creator><creator>Huo, Linsheng</creator><creator>Song, Gangbing</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7719-1501</orcidid></search><sort><creationdate>20170301</creationdate><title>Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers</title><author>Yao, Ping ; Zheng, Botong ; Dawood, Mina ; Huo, Linsheng ; Song, Gangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-6b604c308675d9b0e94c9ddbc1ffe2fb46fe53ad80ab4e58ca07aa20a35d25d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>active sensing</topic><topic>DIC (digital image correlation)</topic><topic>FEM (finite element method)</topic><topic>PZT (lead zirconate titanate)</topic><topic>RSW (resistance spot welding)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Ping</creatorcontrib><creatorcontrib>Zheng, Botong</creatorcontrib><creatorcontrib>Dawood, Mina</creatorcontrib><creatorcontrib>Huo, Linsheng</creatorcontrib><creatorcontrib>Song, Gangbing</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Ping</au><au>Zheng, Botong</au><au>Dawood, Mina</au><au>Huo, Linsheng</au><au>Song, Gangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>26</volume><issue>3</issue><spage>35059</spage><pages>35059-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>This paper proposes a nondestructive method to evaluate the health status of resistance spot-welded (RSW) joint under service load using lead zirconate titanate (PZT) active sensing system, in which the PZT transducers were used as both actuator and sensor. The physical principle of the approach was validated through a numerical analysis showing that an opening between the faying faces at the welded joint occurred under tension load. The opening decreased the contact area hence reduced the amplitude of the stress wave received by the PZT sensor. Therefore, by comparing the energy index of the signals before and after the loading, the health condition of the joint can be evaluated. Five ST14 steel single lap joint specimens were tested under tension load while being monitored by the PZT sensing system and digital image correlation (DIC) system in real time. The data obtained from the DIC system validated the numerical results. By comparing the energy index of the signal obtained from the PZT sensing system before and after unloading, it was concluded that the RSW joint was intact after being loaded to the service load. The proposed method is promising in evaluating the health condition of RSW joint nondestructively.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/aa5d39</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7719-1501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2017-03, Vol.26 (3), p.35059 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_665X_aa5d39 |
source | Institute of Physics Journals |
subjects | active sensing DIC (digital image correlation) FEM (finite element method) PZT (lead zirconate titanate) RSW (resistance spot welding) |
title | Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20time%20monitoring%20of%20spot-welded%20joints%20under%20service%20load%20using%20lead%20zirconate%20titanate%20(PZT)%20transducers&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Yao,%20Ping&rft.date=2017-03-01&rft.volume=26&rft.issue=3&rft.spage=35059&rft.pages=35059-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/aa5d39&rft_dat=%3Ciop_cross%3Esmsaa5d39%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |