Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond
Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, dir...
Gespeichert in:
Veröffentlicht in: | Semiconductor science and technology 2020-09, Vol.35 (9), p.95021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 95021 |
container_title | Semiconductor science and technology |
container_volume | 35 |
creator | Waller, William M Pomeroy, James W Field, Daniel Smith, Edmund J W May, Paul W Kuball, Martin |
description | Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond. |
doi_str_mv | 10.1088/1361-6641/ab9d35 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6641_ab9d35</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sstab9d35</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKJgXb17zA8wbj7aND3KorsLi15WPIaX5BW7bNsl6Qr-e1sq3jw9mDczzAwh94I_Cm7MUigtmNa5WIKrgiouSPYHXZKMS22YkLm8JjcpHTgXwiieke3-E2MLR-r6cxcgftOIqUkDdB5pX9PQRPQD_YKOBoz0A-CYRm4XMNA1vLK-Y6GBdgRuyVU9PvHu9y7I-8vzfrVhu7f1dvW0Y14ZMzBdKuN8VTmRV0UZOAcsledBBlk6rUOlvZQyr1xdcA0liFppdIiFA6-wdGpB-OzrY59SxNqeYtOOya3gdprCTr3t1NvOU4ySh1nS9Cd76M-xGwP-T_8Bn9pfvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Waller, William M ; Pomeroy, James W ; Field, Daniel ; Smith, Edmund J W ; May, Paul W ; Kuball, Martin</creator><creatorcontrib>Waller, William M ; Pomeroy, James W ; Field, Daniel ; Smith, Edmund J W ; May, Paul W ; Kuball, Martin</creatorcontrib><description>Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.</description><identifier>ISSN: 0268-1242</identifier><identifier>EISSN: 1361-6641</identifier><identifier>DOI: 10.1088/1361-6641/ab9d35</identifier><identifier>CODEN: SSTEET</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>2D materials ; acoustic mismatch model ; GaN-on-diamond ; phonon transmission ; thermal barrier ; van der Waals ; wafer bonding</subject><ispartof>Semiconductor science and technology, 2020-09, Vol.35 (9), p.95021</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</citedby><cites>FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</cites><orcidid>0000-0003-3443-8759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6641/ab9d35/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Waller, William M</creatorcontrib><creatorcontrib>Pomeroy, James W</creatorcontrib><creatorcontrib>Field, Daniel</creatorcontrib><creatorcontrib>Smith, Edmund J W</creatorcontrib><creatorcontrib>May, Paul W</creatorcontrib><creatorcontrib>Kuball, Martin</creatorcontrib><title>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</title><title>Semiconductor science and technology</title><addtitle>SST</addtitle><addtitle>Semicond. Sci. Technol</addtitle><description>Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.</description><subject>2D materials</subject><subject>acoustic mismatch model</subject><subject>GaN-on-diamond</subject><subject>phonon transmission</subject><subject>thermal barrier</subject><subject>van der Waals</subject><subject>wafer bonding</subject><issn>0268-1242</issn><issn>1361-6641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UE1LxDAUDKJgXb17zA8wbj7aND3KorsLi15WPIaX5BW7bNsl6Qr-e1sq3jw9mDczzAwh94I_Cm7MUigtmNa5WIKrgiouSPYHXZKMS22YkLm8JjcpHTgXwiieke3-E2MLR-r6cxcgftOIqUkDdB5pX9PQRPQD_YKOBoz0A-CYRm4XMNA1vLK-Y6GBdgRuyVU9PvHu9y7I-8vzfrVhu7f1dvW0Y14ZMzBdKuN8VTmRV0UZOAcsledBBlk6rUOlvZQyr1xdcA0liFppdIiFA6-wdGpB-OzrY59SxNqeYtOOya3gdprCTr3t1NvOU4ySh1nS9Cd76M-xGwP-T_8Bn9pfvQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Waller, William M</creator><creator>Pomeroy, James W</creator><creator>Field, Daniel</creator><creator>Smith, Edmund J W</creator><creator>May, Paul W</creator><creator>Kuball, Martin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3443-8759</orcidid></search><sort><creationdate>20200901</creationdate><title>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</title><author>Waller, William M ; Pomeroy, James W ; Field, Daniel ; Smith, Edmund J W ; May, Paul W ; Kuball, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>acoustic mismatch model</topic><topic>GaN-on-diamond</topic><topic>phonon transmission</topic><topic>thermal barrier</topic><topic>van der Waals</topic><topic>wafer bonding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waller, William M</creatorcontrib><creatorcontrib>Pomeroy, James W</creatorcontrib><creatorcontrib>Field, Daniel</creatorcontrib><creatorcontrib>Smith, Edmund J W</creatorcontrib><creatorcontrib>May, Paul W</creatorcontrib><creatorcontrib>Kuball, Martin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waller, William M</au><au>Pomeroy, James W</au><au>Field, Daniel</au><au>Smith, Edmund J W</au><au>May, Paul W</au><au>Kuball, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</atitle><jtitle>Semiconductor science and technology</jtitle><stitle>SST</stitle><addtitle>Semicond. Sci. Technol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>35</volume><issue>9</issue><spage>95021</spage><pages>95021-</pages><issn>0268-1242</issn><eissn>1361-6641</eissn><coden>SSTEET</coden><abstract>Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6641/ab9d35</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3443-8759</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-1242 |
ispartof | Semiconductor science and technology, 2020-09, Vol.35 (9), p.95021 |
issn | 0268-1242 1361-6641 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6641_ab9d35 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 2D materials acoustic mismatch model GaN-on-diamond phonon transmission thermal barrier van der Waals wafer bonding |
title | Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20boundary%20resistance%20of%20direct%20van%20der%20Waals%20bonded%20GaN-on-diamond&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Waller,%20William%20M&rft.date=2020-09-01&rft.volume=35&rft.issue=9&rft.spage=95021&rft.pages=95021-&rft.issn=0268-1242&rft.eissn=1361-6641&rft.coden=SSTEET&rft_id=info:doi/10.1088/1361-6641/ab9d35&rft_dat=%3Ciop_cross%3Esstab9d35%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |