Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond

Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductor science and technology 2020-09, Vol.35 (9), p.95021
Hauptverfasser: Waller, William M, Pomeroy, James W, Field, Daniel, Smith, Edmund J W, May, Paul W, Kuball, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 95021
container_title Semiconductor science and technology
container_volume 35
creator Waller, William M
Pomeroy, James W
Field, Daniel
Smith, Edmund J W
May, Paul W
Kuball, Martin
description Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.
doi_str_mv 10.1088/1361-6641/ab9d35
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6641_ab9d35</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sstab9d35</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKJgXb17zA8wbj7aND3KorsLi15WPIaX5BW7bNsl6Qr-e1sq3jw9mDczzAwh94I_Cm7MUigtmNa5WIKrgiouSPYHXZKMS22YkLm8JjcpHTgXwiieke3-E2MLR-r6cxcgftOIqUkDdB5pX9PQRPQD_YKOBoz0A-CYRm4XMNA1vLK-Y6GBdgRuyVU9PvHu9y7I-8vzfrVhu7f1dvW0Y14ZMzBdKuN8VTmRV0UZOAcsledBBlk6rUOlvZQyr1xdcA0liFppdIiFA6-wdGpB-OzrY59SxNqeYtOOya3gdprCTr3t1NvOU4ySh1nS9Cd76M-xGwP-T_8Bn9pfvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Waller, William M ; Pomeroy, James W ; Field, Daniel ; Smith, Edmund J W ; May, Paul W ; Kuball, Martin</creator><creatorcontrib>Waller, William M ; Pomeroy, James W ; Field, Daniel ; Smith, Edmund J W ; May, Paul W ; Kuball, Martin</creatorcontrib><description>Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.</description><identifier>ISSN: 0268-1242</identifier><identifier>EISSN: 1361-6641</identifier><identifier>DOI: 10.1088/1361-6641/ab9d35</identifier><identifier>CODEN: SSTEET</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>2D materials ; acoustic mismatch model ; GaN-on-diamond ; phonon transmission ; thermal barrier ; van der Waals ; wafer bonding</subject><ispartof>Semiconductor science and technology, 2020-09, Vol.35 (9), p.95021</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</citedby><cites>FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</cites><orcidid>0000-0003-3443-8759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6641/ab9d35/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Waller, William M</creatorcontrib><creatorcontrib>Pomeroy, James W</creatorcontrib><creatorcontrib>Field, Daniel</creatorcontrib><creatorcontrib>Smith, Edmund J W</creatorcontrib><creatorcontrib>May, Paul W</creatorcontrib><creatorcontrib>Kuball, Martin</creatorcontrib><title>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</title><title>Semiconductor science and technology</title><addtitle>SST</addtitle><addtitle>Semicond. Sci. Technol</addtitle><description>Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.</description><subject>2D materials</subject><subject>acoustic mismatch model</subject><subject>GaN-on-diamond</subject><subject>phonon transmission</subject><subject>thermal barrier</subject><subject>van der Waals</subject><subject>wafer bonding</subject><issn>0268-1242</issn><issn>1361-6641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UE1LxDAUDKJgXb17zA8wbj7aND3KorsLi15WPIaX5BW7bNsl6Qr-e1sq3jw9mDczzAwh94I_Cm7MUigtmNa5WIKrgiouSPYHXZKMS22YkLm8JjcpHTgXwiieke3-E2MLR-r6cxcgftOIqUkDdB5pX9PQRPQD_YKOBoz0A-CYRm4XMNA1vLK-Y6GBdgRuyVU9PvHu9y7I-8vzfrVhu7f1dvW0Y14ZMzBdKuN8VTmRV0UZOAcsledBBlk6rUOlvZQyr1xdcA0liFppdIiFA6-wdGpB-OzrY59SxNqeYtOOya3gdprCTr3t1NvOU4ySh1nS9Cd76M-xGwP-T_8Bn9pfvQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Waller, William M</creator><creator>Pomeroy, James W</creator><creator>Field, Daniel</creator><creator>Smith, Edmund J W</creator><creator>May, Paul W</creator><creator>Kuball, Martin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3443-8759</orcidid></search><sort><creationdate>20200901</creationdate><title>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</title><author>Waller, William M ; Pomeroy, James W ; Field, Daniel ; Smith, Edmund J W ; May, Paul W ; Kuball, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6738bc99b14957d00ae73c0d2d27b66d96c22249bf506a7a1f36ebee5bac3e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>acoustic mismatch model</topic><topic>GaN-on-diamond</topic><topic>phonon transmission</topic><topic>thermal barrier</topic><topic>van der Waals</topic><topic>wafer bonding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waller, William M</creatorcontrib><creatorcontrib>Pomeroy, James W</creatorcontrib><creatorcontrib>Field, Daniel</creatorcontrib><creatorcontrib>Smith, Edmund J W</creatorcontrib><creatorcontrib>May, Paul W</creatorcontrib><creatorcontrib>Kuball, Martin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waller, William M</au><au>Pomeroy, James W</au><au>Field, Daniel</au><au>Smith, Edmund J W</au><au>May, Paul W</au><au>Kuball, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond</atitle><jtitle>Semiconductor science and technology</jtitle><stitle>SST</stitle><addtitle>Semicond. Sci. Technol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>35</volume><issue>9</issue><spage>95021</spage><pages>95021-</pages><issn>0268-1242</issn><eissn>1361-6641</eissn><coden>SSTEET</coden><abstract>Carbide forming interlayers, such as amorphous silicon nitride, are typically used for GaN-on-diamond heterogenous integration. This interlayer has a low thermal conductivity, introducing an additional extrinsic interfacial thermal resistance. It may therefore be advantageous to omit this layer, directly bonding GaN-to-diamond (van der Waals bond). However, weakly bonded interfaces are known to increase the intrinsic thermal boundary resistance. An adapted acoustic mismatch model has been implemented to assess which bonding approach is the most optimal for low thermal resistance GaN-on-diamond. A high thermal boundary resistance of 200 m2 K GW−1 is predicted for weakly bonded GaN-to-diamond interfaces, which is close to the measured value of 220 ± 70 m2 K GW−1, and ∼7× higher than values measured when a 10's nm-thick SiN interlayer is included. Covalently bonded interfaces are therefore critical for achieving low thermal resistance GaN-on-diamond.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6641/ab9d35</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3443-8759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-1242
ispartof Semiconductor science and technology, 2020-09, Vol.35 (9), p.95021
issn 0268-1242
1361-6641
language eng
recordid cdi_iop_journals_10_1088_1361_6641_ab9d35
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 2D materials
acoustic mismatch model
GaN-on-diamond
phonon transmission
thermal barrier
van der Waals
wafer bonding
title Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20boundary%20resistance%20of%20direct%20van%20der%20Waals%20bonded%20GaN-on-diamond&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Waller,%20William%20M&rft.date=2020-09-01&rft.volume=35&rft.issue=9&rft.spage=95021&rft.pages=95021-&rft.issn=0268-1242&rft.eissn=1361-6641&rft.coden=SSTEET&rft_id=info:doi/10.1088/1361-6641/ab9d35&rft_dat=%3Ciop_cross%3Esstab9d35%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true