Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle
Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb c...
Gespeichert in:
Veröffentlicht in: | Semiconductor science and technology 2020-08, Vol.35 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Semiconductor science and technology |
container_volume | 35 |
creator | Zhai, Xiao Song, Jianjun Dai, Xianying Zhao, Tianlong |
description | Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design. |
doi_str_mv | 10.1088/1361-6641/ab92ce |
format | Article |
fullrecord | <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6641_ab92ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sstab92ce</sourcerecordid><originalsourceid>FETCH-LOGICAL-i224t-a55bd0c7edc2fc7e1906ae6ec41aaa9c70a6a90eb017f809913f6797bfdc1f713</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoWKd3j7m5wureS9s0OcrQKQwU1IOnkKaJZCttaTrcn2_3A0-ePvD48H3wIeQW4R5BiDmmHBPOM5zrUjJjz0j0dzonETAuEmQZuyRXIawBEEUKEdksdG22tR5829DW0aXFZPe1o9P3Zkbfypj-tP2Gum1jDoau2-abThEgno3AEzCmle_twQm01MFWdLSd78NAu943xne1vSYXTtfB3pw4IZ9Pjx-L52T1unxZPKwSz1g2JDrPywpMYSvD3AiUwLXl1mSotZamAM21BFsCFk6AlJg6XsiidJVBV2A6IbPjrm87tW63fTN-UwhqH0rtq6h9FXUMNep3_-ghDCrNlVAg8jGe6iqX_gLaQma5</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhai, Xiao ; Song, Jianjun ; Dai, Xianying ; Zhao, Tianlong</creator><creatorcontrib>Zhai, Xiao ; Song, Jianjun ; Dai, Xianying ; Zhao, Tianlong</creatorcontrib><description>Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.</description><identifier>ISSN: 0268-1242</identifier><identifier>EISSN: 1361-6641</identifier><identifier>DOI: 10.1088/1361-6641/ab92ce</identifier><identifier>CODEN: SSTEET</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>alloying ; direct band gap Ge ; electron mobility ; rectification efficiency ; Schottky junction ; Sn, Pb ; work function</subject><ispartof>Semiconductor science and technology, 2020-08, Vol.35 (8)</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3350-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6641/ab92ce/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Zhai, Xiao</creatorcontrib><creatorcontrib>Song, Jianjun</creatorcontrib><creatorcontrib>Dai, Xianying</creatorcontrib><creatorcontrib>Zhao, Tianlong</creatorcontrib><title>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</title><title>Semiconductor science and technology</title><addtitle>SST</addtitle><addtitle>Semicond. Sci. Technol</addtitle><description>Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.</description><subject>alloying</subject><subject>direct band gap Ge</subject><subject>electron mobility</subject><subject>rectification efficiency</subject><subject>Schottky junction</subject><subject>Sn, Pb</subject><subject>work function</subject><issn>0268-1242</issn><issn>1361-6641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkM9LwzAUx4MoWKd3j7m5wureS9s0OcrQKQwU1IOnkKaJZCttaTrcn2_3A0-ePvD48H3wIeQW4R5BiDmmHBPOM5zrUjJjz0j0dzonETAuEmQZuyRXIawBEEUKEdksdG22tR5829DW0aXFZPe1o9P3Zkbfypj-tP2Gum1jDoau2-abThEgno3AEzCmle_twQm01MFWdLSd78NAu943xne1vSYXTtfB3pw4IZ9Pjx-L52T1unxZPKwSz1g2JDrPywpMYSvD3AiUwLXl1mSotZamAM21BFsCFk6AlJg6XsiidJVBV2A6IbPjrm87tW63fTN-UwhqH0rtq6h9FXUMNep3_-ghDCrNlVAg8jGe6iqX_gLaQma5</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhai, Xiao</creator><creator>Song, Jianjun</creator><creator>Dai, Xianying</creator><creator>Zhao, Tianlong</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0003-3350-0346</orcidid></search><sort><creationdate>20200801</creationdate><title>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</title><author>Zhai, Xiao ; Song, Jianjun ; Dai, Xianying ; Zhao, Tianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i224t-a55bd0c7edc2fc7e1906ae6ec41aaa9c70a6a90eb017f809913f6797bfdc1f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alloying</topic><topic>direct band gap Ge</topic><topic>electron mobility</topic><topic>rectification efficiency</topic><topic>Schottky junction</topic><topic>Sn, Pb</topic><topic>work function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Xiao</creatorcontrib><creatorcontrib>Song, Jianjun</creatorcontrib><creatorcontrib>Dai, Xianying</creatorcontrib><creatorcontrib>Zhao, Tianlong</creatorcontrib><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Xiao</au><au>Song, Jianjun</au><au>Dai, Xianying</au><au>Zhao, Tianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</atitle><jtitle>Semiconductor science and technology</jtitle><stitle>SST</stitle><addtitle>Semicond. Sci. Technol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>35</volume><issue>8</issue><issn>0268-1242</issn><eissn>1361-6641</eissn><coden>SSTEET</coden><abstract>Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6641/ab92ce</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3350-0346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-1242 |
ispartof | Semiconductor science and technology, 2020-08, Vol.35 (8) |
issn | 0268-1242 1361-6641 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6641_ab92ce |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | alloying direct band gap Ge electron mobility rectification efficiency Schottky junction Sn, Pb work function |
title | Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Ge1-xYx%20(Sn,%20Pb)%20work%20function%20along%20(100),%20(110),%20(111)%20directions%20based%20on%20first%20principle&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Zhai,%20Xiao&rft.date=2020-08-01&rft.volume=35&rft.issue=8&rft.issn=0268-1242&rft.eissn=1361-6641&rft.coden=SSTEET&rft_id=info:doi/10.1088/1361-6641/ab92ce&rft_dat=%3Ciop%3Esstab92ce%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |