Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle

Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductor science and technology 2020-08, Vol.35 (8)
Hauptverfasser: Zhai, Xiao, Song, Jianjun, Dai, Xianying, Zhao, Tianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Semiconductor science and technology
container_volume 35
creator Zhai, Xiao
Song, Jianjun
Dai, Xianying
Zhao, Tianlong
description Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.
doi_str_mv 10.1088/1361-6641/ab92ce
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6641_ab92ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sstab92ce</sourcerecordid><originalsourceid>FETCH-LOGICAL-i224t-a55bd0c7edc2fc7e1906ae6ec41aaa9c70a6a90eb017f809913f6797bfdc1f713</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoWKd3j7m5wureS9s0OcrQKQwU1IOnkKaJZCttaTrcn2_3A0-ePvD48H3wIeQW4R5BiDmmHBPOM5zrUjJjz0j0dzonETAuEmQZuyRXIawBEEUKEdksdG22tR5829DW0aXFZPe1o9P3Zkbfypj-tP2Gum1jDoau2-abThEgno3AEzCmle_twQm01MFWdLSd78NAu943xne1vSYXTtfB3pw4IZ9Pjx-L52T1unxZPKwSz1g2JDrPywpMYSvD3AiUwLXl1mSotZamAM21BFsCFk6AlJg6XsiidJVBV2A6IbPjrm87tW63fTN-UwhqH0rtq6h9FXUMNep3_-ghDCrNlVAg8jGe6iqX_gLaQma5</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhai, Xiao ; Song, Jianjun ; Dai, Xianying ; Zhao, Tianlong</creator><creatorcontrib>Zhai, Xiao ; Song, Jianjun ; Dai, Xianying ; Zhao, Tianlong</creatorcontrib><description>Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.</description><identifier>ISSN: 0268-1242</identifier><identifier>EISSN: 1361-6641</identifier><identifier>DOI: 10.1088/1361-6641/ab92ce</identifier><identifier>CODEN: SSTEET</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>alloying ; direct band gap Ge ; electron mobility ; rectification efficiency ; Schottky junction ; Sn, Pb ; work function</subject><ispartof>Semiconductor science and technology, 2020-08, Vol.35 (8)</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3350-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6641/ab92ce/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Zhai, Xiao</creatorcontrib><creatorcontrib>Song, Jianjun</creatorcontrib><creatorcontrib>Dai, Xianying</creatorcontrib><creatorcontrib>Zhao, Tianlong</creatorcontrib><title>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</title><title>Semiconductor science and technology</title><addtitle>SST</addtitle><addtitle>Semicond. Sci. Technol</addtitle><description>Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.</description><subject>alloying</subject><subject>direct band gap Ge</subject><subject>electron mobility</subject><subject>rectification efficiency</subject><subject>Schottky junction</subject><subject>Sn, Pb</subject><subject>work function</subject><issn>0268-1242</issn><issn>1361-6641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkM9LwzAUx4MoWKd3j7m5wureS9s0OcrQKQwU1IOnkKaJZCttaTrcn2_3A0-ePvD48H3wIeQW4R5BiDmmHBPOM5zrUjJjz0j0dzonETAuEmQZuyRXIawBEEUKEdksdG22tR5829DW0aXFZPe1o9P3Zkbfypj-tP2Gum1jDoau2-abThEgno3AEzCmle_twQm01MFWdLSd78NAu943xne1vSYXTtfB3pw4IZ9Pjx-L52T1unxZPKwSz1g2JDrPywpMYSvD3AiUwLXl1mSotZamAM21BFsCFk6AlJg6XsiidJVBV2A6IbPjrm87tW63fTN-UwhqH0rtq6h9FXUMNep3_-ghDCrNlVAg8jGe6iqX_gLaQma5</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhai, Xiao</creator><creator>Song, Jianjun</creator><creator>Dai, Xianying</creator><creator>Zhao, Tianlong</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0003-3350-0346</orcidid></search><sort><creationdate>20200801</creationdate><title>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</title><author>Zhai, Xiao ; Song, Jianjun ; Dai, Xianying ; Zhao, Tianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i224t-a55bd0c7edc2fc7e1906ae6ec41aaa9c70a6a90eb017f809913f6797bfdc1f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alloying</topic><topic>direct band gap Ge</topic><topic>electron mobility</topic><topic>rectification efficiency</topic><topic>Schottky junction</topic><topic>Sn, Pb</topic><topic>work function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Xiao</creatorcontrib><creatorcontrib>Song, Jianjun</creatorcontrib><creatorcontrib>Dai, Xianying</creatorcontrib><creatorcontrib>Zhao, Tianlong</creatorcontrib><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Xiao</au><au>Song, Jianjun</au><au>Dai, Xianying</au><au>Zhao, Tianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle</atitle><jtitle>Semiconductor science and technology</jtitle><stitle>SST</stitle><addtitle>Semicond. Sci. Technol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>35</volume><issue>8</issue><issn>0268-1242</issn><eissn>1361-6641</eissn><coden>SSTEET</coden><abstract>Ge Schottky diode is the core component of the rectifier circuit in wireless power transfer. By reducing its series resistance, the rectification efficiency of the wireless power transfer can be improved. Ge can be made into a direct band gap semiconductor by alloying with 8% Sn component or 3% Pb component. The electron mobility of direct band gap Ge1-xYx (Sn, Pb) alloy is two to three times that of Ge. High electron mobility will reduce the series resistance of a Schottky diode. Therefore, in recent years, direct band-gap Ge1-xYx (Sn, Pb) alloys for Schottky diodes have attracted much more attention. Using a direct band gap Ge1-xYx (Sn, Pb) alloy to make a Schottky diode requires designing a Schottky junction first. To this end, the first-principle method is used to calculate Ge1-xYx (Sn, Pb) alloys along different directions, which provides a theoretical basis for the subsequent Schottky junction design.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6641/ab92ce</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3350-0346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-1242
ispartof Semiconductor science and technology, 2020-08, Vol.35 (8)
issn 0268-1242
1361-6641
language eng
recordid cdi_iop_journals_10_1088_1361_6641_ab92ce
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects alloying
direct band gap Ge
electron mobility
rectification efficiency
Schottky junction
Sn, Pb
work function
title Calculation of Ge1-xYx (Sn, Pb) work function along (100), (110), (111) directions based on first principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Ge1-xYx%20(Sn,%20Pb)%20work%20function%20along%20(100),%20(110),%20(111)%20directions%20based%20on%20first%20principle&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Zhai,%20Xiao&rft.date=2020-08-01&rft.volume=35&rft.issue=8&rft.issn=0268-1242&rft.eissn=1361-6641&rft.coden=SSTEET&rft_id=info:doi/10.1088/1361-6641/ab92ce&rft_dat=%3Ciop%3Esstab92ce%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true