Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation

Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma sources science & technology 2024-07, Vol.33 (7), p.75002
Hauptverfasser: Fujera, Jiří, Homola, Tomáš, Jirásek, Vít, Ondráček, Jakub, Tarabová, Barbora, Prukner, Václav, Šimek, Milan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75002
container_title Plasma sources science & technology
container_volume 33
creator Fujera, Jiří
Homola, Tomáš
Jirásek, Vít
Ondráček, Jakub
Tarabová, Barbora
Prukner, Václav
Šimek, Milan
description Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (
doi_str_mv 10.1088/1361-6595/ad590b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_ad590b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstad590b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-6aea0532f01b28fb7bda8525bd6248bb991b7ea05929932d463d6881585fa4893</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt7l1m6cGweTSZxV1tfUBBB1yGZJG3KdDIkM6j_3hkqrsTVPVy-c7nnAHCJ0Q1GQsww5bjgTLKZtkwicwQmv6tjMEGS0wIRRk7BWc47hDAWpJyA14VLMce6MDo7C_d93YVtrOv4AXOfvK4cXN2tbqGGbYr7kEOzgbodtK620McEm9CluHEN9OFTdyE25-DE6zq7i585Be8P92_Lp2L98vi8XKyLCkveFVw7jRglHmFDhDelsVowwozlZC6MkRKbckQkkZISO-fUciEwE8zruZB0CtDhbjUEyMl51aaw1-lLYaTGStSYX4351aGSwXJ9sITYql3sUzM8-B9-9Qfe5twpSlWpUMkQIqq1nn4DXHBwYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Fujera, Jiří ; Homola, Tomáš ; Jirásek, Vít ; Ondráček, Jakub ; Tarabová, Barbora ; Prukner, Václav ; Šimek, Milan</creator><creatorcontrib>Fujera, Jiří ; Homola, Tomáš ; Jirásek, Vít ; Ondráček, Jakub ; Tarabová, Barbora ; Prukner, Václav ; Šimek, Milan</creatorcontrib><description>Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (&lt;5 W) of MSDBD and the straightforward construction of the plasma unit, the suggested approach for PAW production offers a viable route for advancing a decentralized sustainable economy.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/ad590b</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>ammonia ; dielectric barrier discharge ; multihollow surface dielectric barrier discharge ; nitrogen fixation ; nonthermal plasma ; plasma-activated water ; water aerosol</subject><ispartof>Plasma sources science &amp; technology, 2024-07, Vol.33 (7), p.75002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-6aea0532f01b28fb7bda8525bd6248bb991b7ea05929932d463d6881585fa4893</cites><orcidid>0000-0002-1550-3634 ; 0000-0003-0629-257X ; 0000-0001-9936-1786 ; 0000-0003-1730-8493 ; 0000-0002-8522-6169 ; 0000-0003-1662-0610 ; 0000-0002-3561-8914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/ad590b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Fujera, Jiří</creatorcontrib><creatorcontrib>Homola, Tomáš</creatorcontrib><creatorcontrib>Jirásek, Vít</creatorcontrib><creatorcontrib>Ondráček, Jakub</creatorcontrib><creatorcontrib>Tarabová, Barbora</creatorcontrib><creatorcontrib>Prukner, Václav</creatorcontrib><creatorcontrib>Šimek, Milan</creatorcontrib><title>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (&lt;5 W) of MSDBD and the straightforward construction of the plasma unit, the suggested approach for PAW production offers a viable route for advancing a decentralized sustainable economy.</description><subject>ammonia</subject><subject>dielectric barrier discharge</subject><subject>multihollow surface dielectric barrier discharge</subject><subject>nitrogen fixation</subject><subject>nonthermal plasma</subject><subject>plasma-activated water</subject><subject>water aerosol</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kEtLAzEUhYMoWKt7l1m6cGweTSZxV1tfUBBB1yGZJG3KdDIkM6j_3hkqrsTVPVy-c7nnAHCJ0Q1GQsww5bjgTLKZtkwicwQmv6tjMEGS0wIRRk7BWc47hDAWpJyA14VLMce6MDo7C_d93YVtrOv4AXOfvK4cXN2tbqGGbYr7kEOzgbodtK620McEm9CluHEN9OFTdyE25-DE6zq7i585Be8P92_Lp2L98vi8XKyLCkveFVw7jRglHmFDhDelsVowwozlZC6MkRKbckQkkZISO-fUciEwE8zruZB0CtDhbjUEyMl51aaw1-lLYaTGStSYX4351aGSwXJ9sITYql3sUzM8-B9-9Qfe5twpSlWpUMkQIqq1nn4DXHBwYg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Fujera, Jiří</creator><creator>Homola, Tomáš</creator><creator>Jirásek, Vít</creator><creator>Ondráček, Jakub</creator><creator>Tarabová, Barbora</creator><creator>Prukner, Václav</creator><creator>Šimek, Milan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1550-3634</orcidid><orcidid>https://orcid.org/0000-0003-0629-257X</orcidid><orcidid>https://orcid.org/0000-0001-9936-1786</orcidid><orcidid>https://orcid.org/0000-0003-1730-8493</orcidid><orcidid>https://orcid.org/0000-0002-8522-6169</orcidid><orcidid>https://orcid.org/0000-0003-1662-0610</orcidid><orcidid>https://orcid.org/0000-0002-3561-8914</orcidid></search><sort><creationdate>20240701</creationdate><title>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</title><author>Fujera, Jiří ; Homola, Tomáš ; Jirásek, Vít ; Ondráček, Jakub ; Tarabová, Barbora ; Prukner, Václav ; Šimek, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-6aea0532f01b28fb7bda8525bd6248bb991b7ea05929932d463d6881585fa4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ammonia</topic><topic>dielectric barrier discharge</topic><topic>multihollow surface dielectric barrier discharge</topic><topic>nitrogen fixation</topic><topic>nonthermal plasma</topic><topic>plasma-activated water</topic><topic>water aerosol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujera, Jiří</creatorcontrib><creatorcontrib>Homola, Tomáš</creatorcontrib><creatorcontrib>Jirásek, Vít</creatorcontrib><creatorcontrib>Ondráček, Jakub</creatorcontrib><creatorcontrib>Tarabová, Barbora</creatorcontrib><creatorcontrib>Prukner, Václav</creatorcontrib><creatorcontrib>Šimek, Milan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujera, Jiří</au><au>Homola, Tomáš</au><au>Jirásek, Vít</au><au>Ondráček, Jakub</au><au>Tarabová, Barbora</au><au>Prukner, Václav</au><au>Šimek, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>33</volume><issue>7</issue><spage>75002</spage><pages>75002-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (&lt;5 W) of MSDBD and the straightforward construction of the plasma unit, the suggested approach for PAW production offers a viable route for advancing a decentralized sustainable economy.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/ad590b</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1550-3634</orcidid><orcidid>https://orcid.org/0000-0003-0629-257X</orcidid><orcidid>https://orcid.org/0000-0001-9936-1786</orcidid><orcidid>https://orcid.org/0000-0003-1730-8493</orcidid><orcidid>https://orcid.org/0000-0002-8522-6169</orcidid><orcidid>https://orcid.org/0000-0003-1662-0610</orcidid><orcidid>https://orcid.org/0000-0002-3561-8914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2024-07, Vol.33 (7), p.75002
issn 0963-0252
1361-6595
language eng
recordid cdi_iop_journals_10_1088_1361_6595_ad590b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects ammonia
dielectric barrier discharge
multihollow surface dielectric barrier discharge
nitrogen fixation
nonthermal plasma
plasma-activated water
water aerosol
title Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol-based%20multihollow%20surface%20DBD:%20a%20promising%20approach%20for%20nitrogen%20fixation&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Fujera,%20Ji%C5%99%C3%AD&rft.date=2024-07-01&rft.volume=33&rft.issue=7&rft.spage=75002&rft.pages=75002-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/ad590b&rft_dat=%3Ciop_cross%3Epsstad590b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true