Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation
Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihol...
Gespeichert in:
Veröffentlicht in: | Plasma sources science & technology 2024-07, Vol.33 (7), p.75002 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 75002 |
container_title | Plasma sources science & technology |
container_volume | 33 |
creator | Fujera, Jiří Homola, Tomáš Jirásek, Vít Ondráček, Jakub Tarabová, Barbora Prukner, Václav Šimek, Milan |
description | Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption ( |
doi_str_mv | 10.1088/1361-6595/ad590b |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_ad590b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstad590b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-6aea0532f01b28fb7bda8525bd6248bb991b7ea05929932d463d6881585fa4893</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt7l1m6cGweTSZxV1tfUBBB1yGZJG3KdDIkM6j_3hkqrsTVPVy-c7nnAHCJ0Q1GQsww5bjgTLKZtkwicwQmv6tjMEGS0wIRRk7BWc47hDAWpJyA14VLMce6MDo7C_d93YVtrOv4AXOfvK4cXN2tbqGGbYr7kEOzgbodtK620McEm9CluHEN9OFTdyE25-DE6zq7i585Be8P92_Lp2L98vi8XKyLCkveFVw7jRglHmFDhDelsVowwozlZC6MkRKbckQkkZISO-fUciEwE8zruZB0CtDhbjUEyMl51aaw1-lLYaTGStSYX4351aGSwXJ9sITYql3sUzM8-B9-9Qfe5twpSlWpUMkQIqq1nn4DXHBwYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Fujera, Jiří ; Homola, Tomáš ; Jirásek, Vít ; Ondráček, Jakub ; Tarabová, Barbora ; Prukner, Václav ; Šimek, Milan</creator><creatorcontrib>Fujera, Jiří ; Homola, Tomáš ; Jirásek, Vít ; Ondráček, Jakub ; Tarabová, Barbora ; Prukner, Václav ; Šimek, Milan</creatorcontrib><description>Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (<5 W) of MSDBD and the straightforward construction of the plasma unit, the suggested approach for PAW production offers a viable route for advancing a decentralized sustainable economy.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/ad590b</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>ammonia ; dielectric barrier discharge ; multihollow surface dielectric barrier discharge ; nitrogen fixation ; nonthermal plasma ; plasma-activated water ; water aerosol</subject><ispartof>Plasma sources science & technology, 2024-07, Vol.33 (7), p.75002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-6aea0532f01b28fb7bda8525bd6248bb991b7ea05929932d463d6881585fa4893</cites><orcidid>0000-0002-1550-3634 ; 0000-0003-0629-257X ; 0000-0001-9936-1786 ; 0000-0003-1730-8493 ; 0000-0002-8522-6169 ; 0000-0003-1662-0610 ; 0000-0002-3561-8914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/ad590b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Fujera, Jiří</creatorcontrib><creatorcontrib>Homola, Tomáš</creatorcontrib><creatorcontrib>Jirásek, Vít</creatorcontrib><creatorcontrib>Ondráček, Jakub</creatorcontrib><creatorcontrib>Tarabová, Barbora</creatorcontrib><creatorcontrib>Prukner, Václav</creatorcontrib><creatorcontrib>Šimek, Milan</creatorcontrib><title>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</title><title>Plasma sources science & technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (<5 W) of MSDBD and the straightforward construction of the plasma unit, the suggested approach for PAW production offers a viable route for advancing a decentralized sustainable economy.</description><subject>ammonia</subject><subject>dielectric barrier discharge</subject><subject>multihollow surface dielectric barrier discharge</subject><subject>nitrogen fixation</subject><subject>nonthermal plasma</subject><subject>plasma-activated water</subject><subject>water aerosol</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kEtLAzEUhYMoWKt7l1m6cGweTSZxV1tfUBBB1yGZJG3KdDIkM6j_3hkqrsTVPVy-c7nnAHCJ0Q1GQsww5bjgTLKZtkwicwQmv6tjMEGS0wIRRk7BWc47hDAWpJyA14VLMce6MDo7C_d93YVtrOv4AXOfvK4cXN2tbqGGbYr7kEOzgbodtK620McEm9CluHEN9OFTdyE25-DE6zq7i585Be8P92_Lp2L98vi8XKyLCkveFVw7jRglHmFDhDelsVowwozlZC6MkRKbckQkkZISO-fUciEwE8zruZB0CtDhbjUEyMl51aaw1-lLYaTGStSYX4351aGSwXJ9sITYql3sUzM8-B9-9Qfe5twpSlWpUMkQIqq1nn4DXHBwYg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Fujera, Jiří</creator><creator>Homola, Tomáš</creator><creator>Jirásek, Vít</creator><creator>Ondráček, Jakub</creator><creator>Tarabová, Barbora</creator><creator>Prukner, Václav</creator><creator>Šimek, Milan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1550-3634</orcidid><orcidid>https://orcid.org/0000-0003-0629-257X</orcidid><orcidid>https://orcid.org/0000-0001-9936-1786</orcidid><orcidid>https://orcid.org/0000-0003-1730-8493</orcidid><orcidid>https://orcid.org/0000-0002-8522-6169</orcidid><orcidid>https://orcid.org/0000-0003-1662-0610</orcidid><orcidid>https://orcid.org/0000-0002-3561-8914</orcidid></search><sort><creationdate>20240701</creationdate><title>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</title><author>Fujera, Jiří ; Homola, Tomáš ; Jirásek, Vít ; Ondráček, Jakub ; Tarabová, Barbora ; Prukner, Václav ; Šimek, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-6aea0532f01b28fb7bda8525bd6248bb991b7ea05929932d463d6881585fa4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ammonia</topic><topic>dielectric barrier discharge</topic><topic>multihollow surface dielectric barrier discharge</topic><topic>nitrogen fixation</topic><topic>nonthermal plasma</topic><topic>plasma-activated water</topic><topic>water aerosol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujera, Jiří</creatorcontrib><creatorcontrib>Homola, Tomáš</creatorcontrib><creatorcontrib>Jirásek, Vít</creatorcontrib><creatorcontrib>Ondráček, Jakub</creatorcontrib><creatorcontrib>Tarabová, Barbora</creatorcontrib><creatorcontrib>Prukner, Václav</creatorcontrib><creatorcontrib>Šimek, Milan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Plasma sources science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujera, Jiří</au><au>Homola, Tomáš</au><au>Jirásek, Vít</au><au>Ondráček, Jakub</au><au>Tarabová, Barbora</au><au>Prukner, Václav</au><au>Šimek, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation</atitle><jtitle>Plasma sources science & technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>33</volume><issue>7</issue><spage>75002</spage><pages>75002-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Nonthermal plasma reactors, which enable electrical discharges to be generated in various gases and both liquid and gaseous water, have attracted considerable attention as an alternative method for producing ammonia and fixing nitrogen. In this work, we investigated the basic performance of multihollow surface dielectric barrier discharge (MSDBD) to generate plasma in synthetic air and nitrogen-containing admixtures of water aerosols. The MSDBD in combination with the aerosol stream represents a rather complex geometry for generating the discharge; the plasma is significantly affected by the physicochemical properties of water aerosols on the one hand, on the other hand, this system facilitates the solvation of gaseous plasma products in water and the production of plasma-activated nitrogen-rich water (PAW). The plasma interaction with the water aerosols was studied using optical emission spectroscopy and a scanning mobility particle sizer to provide information about the size and distribution of the water particles entering and exiting the plasma reactor. The gas exiting the plasma reactor was analyzed using Fourier-transform infrared spectroscopy, and the PAW collected in an ice-cooled vessel was analyzed for nitrates (NO 2 − ), nitrites (NO 3 − ), and ammonia (NH 3 ). MSDBD shows promise as a catalyst- and H 2 -free method for fixing nitrogen in water. Additionally, given the low energy consumption (<5 W) of MSDBD and the straightforward construction of the plasma unit, the suggested approach for PAW production offers a viable route for advancing a decentralized sustainable economy.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/ad590b</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1550-3634</orcidid><orcidid>https://orcid.org/0000-0003-0629-257X</orcidid><orcidid>https://orcid.org/0000-0001-9936-1786</orcidid><orcidid>https://orcid.org/0000-0003-1730-8493</orcidid><orcidid>https://orcid.org/0000-0002-8522-6169</orcidid><orcidid>https://orcid.org/0000-0003-1662-0610</orcidid><orcidid>https://orcid.org/0000-0002-3561-8914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-0252 |
ispartof | Plasma sources science & technology, 2024-07, Vol.33 (7), p.75002 |
issn | 0963-0252 1361-6595 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6595_ad590b |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | ammonia dielectric barrier discharge multihollow surface dielectric barrier discharge nitrogen fixation nonthermal plasma plasma-activated water water aerosol |
title | Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol-based%20multihollow%20surface%20DBD:%20a%20promising%20approach%20for%20nitrogen%20fixation&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Fujera,%20Ji%C5%99%C3%AD&rft.date=2024-07-01&rft.volume=33&rft.issue=7&rft.spage=75002&rft.pages=75002-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/ad590b&rft_dat=%3Ciop_cross%3Epsstad590b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |