Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes
Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10 6 V m −1 ) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the de...
Gespeichert in:
Veröffentlicht in: | Plasma sources science & technology 2023-08, Vol.32 (8), p.85018 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85018 |
container_title | Plasma sources science & technology |
container_volume | 32 |
creator | Li, Dingchen Li, Chuan Li, Jiawei Xiao, Menghan Wang, Pengyu Liu, Zhi Zhang, Ming Yang, Yong Yu, Kexun |
description | Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10
6
V m
−1
) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes. |
doi_str_mv | 10.1088/1361-6595/acf0e6 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_acf0e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstacf0e6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt3jzl6cO1L0qRZb1KsCgUPKngLL9lEt7SbJUkP_fd2rXgSTwPzZobHR8glgxsGWk-YUKxSspYTdAG8OiKjX-uYjKBWogIu-Sk5y3kFwJjmsxF5f-mxtLH4TR8TrqmLKXZImza7T0wfng6CrvjU5tK6TGOgHXbRr70rKTb-lmJKuKMOk43d961src_n5CTgOvuLHx2Tt8X96_yxWj4_PM3vlpUTTJQKQYlaoJhJ4MoH4SWqutECQLgwBWtVU-u9xTjUllvNpJO1m6Kz08CtFGJM4LDrUsw5-WD61G4w7QwDM5AxAwYzYDAHMvvK9aHSxt6s4jZ1-wf_i1_9Ee9zLkZwow1oCUybvgniC6csdLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Li, Dingchen ; Li, Chuan ; Li, Jiawei ; Xiao, Menghan ; Wang, Pengyu ; Liu, Zhi ; Zhang, Ming ; Yang, Yong ; Yu, Kexun</creator><creatorcontrib>Li, Dingchen ; Li, Chuan ; Li, Jiawei ; Xiao, Menghan ; Wang, Pengyu ; Liu, Zhi ; Zhang, Ming ; Yang, Yong ; Yu, Kexun</creatorcontrib><description>Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10
6
V m
−1
) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/acf0e6</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>carbon nanotube ; corona discharge ; nanoelectrode ; numerical simulation</subject><ispartof>Plasma sources science & technology, 2023-08, Vol.32 (8), p.85018</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</citedby><cites>FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</cites><orcidid>0000-0002-8332-1488 ; 0000-0003-4761-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/acf0e6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Li, Dingchen</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Xiao, Menghan</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Yu, Kexun</creatorcontrib><title>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</title><title>Plasma sources science & technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10
6
V m
−1
) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.</description><subject>carbon nanotube</subject><subject>corona discharge</subject><subject>nanoelectrode</subject><subject>numerical simulation</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKt3jzl6cO1L0qRZb1KsCgUPKngLL9lEt7SbJUkP_fd2rXgSTwPzZobHR8glgxsGWk-YUKxSspYTdAG8OiKjX-uYjKBWogIu-Sk5y3kFwJjmsxF5f-mxtLH4TR8TrqmLKXZImza7T0wfng6CrvjU5tK6TGOgHXbRr70rKTb-lmJKuKMOk43d961src_n5CTgOvuLHx2Tt8X96_yxWj4_PM3vlpUTTJQKQYlaoJhJ4MoH4SWqutECQLgwBWtVU-u9xTjUllvNpJO1m6Kz08CtFGJM4LDrUsw5-WD61G4w7QwDM5AxAwYzYDAHMvvK9aHSxt6s4jZ1-wf_i1_9Ee9zLkZwow1oCUybvgniC6csdLg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Li, Dingchen</creator><creator>Li, Chuan</creator><creator>Li, Jiawei</creator><creator>Xiao, Menghan</creator><creator>Wang, Pengyu</creator><creator>Liu, Zhi</creator><creator>Zhang, Ming</creator><creator>Yang, Yong</creator><creator>Yu, Kexun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8332-1488</orcidid><orcidid>https://orcid.org/0000-0003-4761-5160</orcidid></search><sort><creationdate>20230801</creationdate><title>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</title><author>Li, Dingchen ; Li, Chuan ; Li, Jiawei ; Xiao, Menghan ; Wang, Pengyu ; Liu, Zhi ; Zhang, Ming ; Yang, Yong ; Yu, Kexun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon nanotube</topic><topic>corona discharge</topic><topic>nanoelectrode</topic><topic>numerical simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dingchen</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Xiao, Menghan</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Yu, Kexun</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dingchen</au><au>Li, Chuan</au><au>Li, Jiawei</au><au>Xiao, Menghan</au><au>Wang, Pengyu</au><au>Liu, Zhi</au><au>Zhang, Ming</au><au>Yang, Yong</au><au>Yu, Kexun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</atitle><jtitle>Plasma sources science & technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>32</volume><issue>8</issue><spage>85018</spage><pages>85018-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10
6
V m
−1
) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/acf0e6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8332-1488</orcidid><orcidid>https://orcid.org/0000-0003-4761-5160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-0252 |
ispartof | Plasma sources science & technology, 2023-08, Vol.32 (8), p.85018 |
issn | 0963-0252 1361-6595 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6595_acf0e6 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | carbon nanotube corona discharge nanoelectrode numerical simulation |
title | Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20corona%20discharge%20characteristics%20of%20nanoelectrode:%20array%20carbon%20nanotubes&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Li,%20Dingchen&rft.date=2023-08-01&rft.volume=32&rft.issue=8&rft.spage=85018&rft.pages=85018-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/acf0e6&rft_dat=%3Ciop_cross%3Epsstacf0e6%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |