Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes

Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10 6 V m −1 ) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma sources science & technology 2023-08, Vol.32 (8), p.85018
Hauptverfasser: Li, Dingchen, Li, Chuan, Li, Jiawei, Xiao, Menghan, Wang, Pengyu, Liu, Zhi, Zhang, Ming, Yang, Yong, Yu, Kexun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85018
container_title Plasma sources science & technology
container_volume 32
creator Li, Dingchen
Li, Chuan
Li, Jiawei
Xiao, Menghan
Wang, Pengyu
Liu, Zhi
Zhang, Ming
Yang, Yong
Yu, Kexun
description Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10 6 V m −1 ) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.
doi_str_mv 10.1088/1361-6595/acf0e6
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_acf0e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstacf0e6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt3jzl6cO1L0qRZb1KsCgUPKngLL9lEt7SbJUkP_fd2rXgSTwPzZobHR8glgxsGWk-YUKxSspYTdAG8OiKjX-uYjKBWogIu-Sk5y3kFwJjmsxF5f-mxtLH4TR8TrqmLKXZImza7T0wfng6CrvjU5tK6TGOgHXbRr70rKTb-lmJKuKMOk43d961src_n5CTgOvuLHx2Tt8X96_yxWj4_PM3vlpUTTJQKQYlaoJhJ4MoH4SWqutECQLgwBWtVU-u9xTjUllvNpJO1m6Kz08CtFGJM4LDrUsw5-WD61G4w7QwDM5AxAwYzYDAHMvvK9aHSxt6s4jZ1-wf_i1_9Ee9zLkZwow1oCUybvgniC6csdLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Li, Dingchen ; Li, Chuan ; Li, Jiawei ; Xiao, Menghan ; Wang, Pengyu ; Liu, Zhi ; Zhang, Ming ; Yang, Yong ; Yu, Kexun</creator><creatorcontrib>Li, Dingchen ; Li, Chuan ; Li, Jiawei ; Xiao, Menghan ; Wang, Pengyu ; Liu, Zhi ; Zhang, Ming ; Yang, Yong ; Yu, Kexun</creatorcontrib><description>Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10 6 V m −1 ) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/acf0e6</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>carbon nanotube ; corona discharge ; nanoelectrode ; numerical simulation</subject><ispartof>Plasma sources science &amp; technology, 2023-08, Vol.32 (8), p.85018</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</citedby><cites>FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</cites><orcidid>0000-0002-8332-1488 ; 0000-0003-4761-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/acf0e6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Li, Dingchen</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Xiao, Menghan</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Yu, Kexun</creatorcontrib><title>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10 6 V m −1 ) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.</description><subject>carbon nanotube</subject><subject>corona discharge</subject><subject>nanoelectrode</subject><subject>numerical simulation</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKt3jzl6cO1L0qRZb1KsCgUPKngLL9lEt7SbJUkP_fd2rXgSTwPzZobHR8glgxsGWk-YUKxSspYTdAG8OiKjX-uYjKBWogIu-Sk5y3kFwJjmsxF5f-mxtLH4TR8TrqmLKXZImza7T0wfng6CrvjU5tK6TGOgHXbRr70rKTb-lmJKuKMOk43d961src_n5CTgOvuLHx2Tt8X96_yxWj4_PM3vlpUTTJQKQYlaoJhJ4MoH4SWqutECQLgwBWtVU-u9xTjUllvNpJO1m6Kz08CtFGJM4LDrUsw5-WD61G4w7QwDM5AxAwYzYDAHMvvK9aHSxt6s4jZ1-wf_i1_9Ee9zLkZwow1oCUybvgniC6csdLg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Li, Dingchen</creator><creator>Li, Chuan</creator><creator>Li, Jiawei</creator><creator>Xiao, Menghan</creator><creator>Wang, Pengyu</creator><creator>Liu, Zhi</creator><creator>Zhang, Ming</creator><creator>Yang, Yong</creator><creator>Yu, Kexun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8332-1488</orcidid><orcidid>https://orcid.org/0000-0003-4761-5160</orcidid></search><sort><creationdate>20230801</creationdate><title>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</title><author>Li, Dingchen ; Li, Chuan ; Li, Jiawei ; Xiao, Menghan ; Wang, Pengyu ; Liu, Zhi ; Zhang, Ming ; Yang, Yong ; Yu, Kexun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a06393a375026ef3e5a69d83003cf40bb6d98a691209b2b815c59c4acb4f2b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon nanotube</topic><topic>corona discharge</topic><topic>nanoelectrode</topic><topic>numerical simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dingchen</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Xiao, Menghan</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Yu, Kexun</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dingchen</au><au>Li, Chuan</au><au>Li, Jiawei</au><au>Xiao, Menghan</au><au>Wang, Pengyu</au><au>Liu, Zhi</au><au>Zhang, Ming</au><au>Yang, Yong</au><au>Yu, Kexun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>32</volume><issue>8</issue><spage>85018</spage><pages>85018-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Corona discharge is a widely-used phenomenon that requires a sharp electrode to generate a strong electric field (10 6 V m −1 ) at high voltages (typically in the tens of kV). The advent of nanoelectrodes has overcome the technical limitations of traditional electrodes, dramatically improving the density of discharge points and enabling low voltage (several kV) corona discharges with nanometer-sized tips. Consequently, nanoelectrode discharge technology has the potential to revolutionize the miniaturization of plasma equipment in the future. However, research on the discharge characteristics of nanoelectrodes is still relatively sparse. This paper focuses on an array of carbon nanotubes (ACNTs) and proposes a numerical simulation model based on the hybrid hydrodynamics model and ion migration model. The accuracy and efficiency of this model are demonstrated by a high degree of agreement between the results from numerical simulations and experiments. In addition, the corona discharge characteristics of ACNTs are studied and discussed, particularly the spatiotemporal evolution of charged particles near the tip. This paper may provide a method of analysis for optimizing and broadly applying nanoelectrodes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/acf0e6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8332-1488</orcidid><orcidid>https://orcid.org/0000-0003-4761-5160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2023-08, Vol.32 (8), p.85018
issn 0963-0252
1361-6595
language eng
recordid cdi_iop_journals_10_1088_1361_6595_acf0e6
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects carbon nanotube
corona discharge
nanoelectrode
numerical simulation
title Spatiotemporal corona discharge characteristics of nanoelectrode: array carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20corona%20discharge%20characteristics%20of%20nanoelectrode:%20array%20carbon%20nanotubes&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Li,%20Dingchen&rft.date=2023-08-01&rft.volume=32&rft.issue=8&rft.spage=85018&rft.pages=85018-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/acf0e6&rft_dat=%3Ciop_cross%3Epsstacf0e6%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true