Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code

The present work investigates electron transport and heating mechanisms using an ( r ,  z ) particle-in-cell simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. Due to a strong geometric asymmetry and a blocking capacitor, the discharge features a large negat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma sources science & technology 2023-04, Vol.32 (4), p.45008
Hauptverfasser: Eremin, D, Berger, B, Engel, D, Kallähn, J, Köhn, K, Krüger, D, Xu, L, Oberberg, M, Wölfel, C, Lunze, J, Awakowicz, P, Schulze, J, Brinkmann, R P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45008
container_title Plasma sources science & technology
container_volume 32
creator Eremin, D
Berger, B
Engel, D
Kallähn, J
Köhn, K
Krüger, D
Xu, L
Oberberg, M
Wölfel, C
Lunze, J
Awakowicz, P
Schulze, J
Brinkmann, R P
description The present work investigates electron transport and heating mechanisms using an ( r ,  z ) particle-in-cell simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. Due to a strong geometric asymmetry and a blocking capacitor, the discharge features a large negative self-bias conducive to sputtering applications. Employing decomposition of the electron transport parallel and perpendicular to the magnetic field lines, it is shown that for the considered magnetic field topology the electron current flows through different channels in the ( r ,  z ) plane: a ‘transverse’ one, which involves current flow through the electrons’ magnetic confinement region (EMCR) above the racetrack, and two ‘longitudinal’ ones, where electrons’ guiding centers move along the magnetic field lines. Electrons gain energy from the electric field along these channels following various mechanisms, which are rather distinct from those sustaining dc-powered magnetrons. The longitudinal power absorption involves mirror-effect heating (MEH), nonlinear electron resonance heating, magnetized bounce heating (MBH), and the heating by the ambipolar field at the sheath-presheath interface. The MEH and MBH represent two new mechanisms missing from the previous literature. The MEH is caused by a reversed electric field needed to overcome the mirror force generated in a nonuniform magnetic field to ensure sufficient flux of electrons to the powered electrode, and the MBH is related to a possibility for an electron to undergo multiple reflections from the expanding sheath in the longitudinal channels connected by the arc-like magnetic field. The electron heating in the transverse channel is caused mostly by the essentially collisionless Hall heating in the EMCR above the racetrack, generating a strong E × B azimuthal drift velocity. The latter mechanism results in an efficient electron energization, i.e. energy transfer from the electric field to electrons in the inelastic range. Since the main electron population energized by this mechanism remains confined within the discharge for a long time, its contribution to the ionization processes is dominant.
doi_str_mv 10.1088/1361-6595/acc47f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_acc47f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstacc47f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e3624c464439682f0f45b269d1011c1032e5db248ed67dd7da8ff3523240f9fb3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGExG9e5wfYGE_2tJ6MwSFBONFz82wO4tL2i3uFhL8K_5ZixhvniZ587yTmYexW8FHghfFWKhcJHlWZmPUOp3YMzb4i87ZgJe5SrjM5CW7inHDuRCFnAzY16wm3YXWgzl4bJyO4Dxsa_QYIKBxLdhAHzvy-gANrj39wD0QG4z3sFiMYE7YOb8G9AbIU1i7zz7oqYb0O3oXmwix2xlHBvYOAUEatYcths7pmhLnE011PX5ufUcwxVC3oFtD1-zCYh3p5ncO2dvj7HU6T5YvT4vpwzLRSsouIZXLVKd5mqoyL6TlNs1WMi-N6J_UgitJmVnJtCCTT4yZGCysVZlUMuW2tCs1ZPy0V4c2xkC22gbXYDhUgldHudXRZHU0WZ3k9pW7U8W122rT7oLvD_wf_wYtaH3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Eremin, D ; Berger, B ; Engel, D ; Kallähn, J ; Köhn, K ; Krüger, D ; Xu, L ; Oberberg, M ; Wölfel, C ; Lunze, J ; Awakowicz, P ; Schulze, J ; Brinkmann, R P</creator><creatorcontrib>Eremin, D ; Berger, B ; Engel, D ; Kallähn, J ; Köhn, K ; Krüger, D ; Xu, L ; Oberberg, M ; Wölfel, C ; Lunze, J ; Awakowicz, P ; Schulze, J ; Brinkmann, R P</creatorcontrib><description>The present work investigates electron transport and heating mechanisms using an ( r ,  z ) particle-in-cell simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. Due to a strong geometric asymmetry and a blocking capacitor, the discharge features a large negative self-bias conducive to sputtering applications. Employing decomposition of the electron transport parallel and perpendicular to the magnetic field lines, it is shown that for the considered magnetic field topology the electron current flows through different channels in the ( r ,  z ) plane: a ‘transverse’ one, which involves current flow through the electrons’ magnetic confinement region (EMCR) above the racetrack, and two ‘longitudinal’ ones, where electrons’ guiding centers move along the magnetic field lines. Electrons gain energy from the electric field along these channels following various mechanisms, which are rather distinct from those sustaining dc-powered magnetrons. The longitudinal power absorption involves mirror-effect heating (MEH), nonlinear electron resonance heating, magnetized bounce heating (MBH), and the heating by the ambipolar field at the sheath-presheath interface. The MEH and MBH represent two new mechanisms missing from the previous literature. The MEH is caused by a reversed electric field needed to overcome the mirror force generated in a nonuniform magnetic field to ensure sufficient flux of electrons to the powered electrode, and the MBH is related to a possibility for an electron to undergo multiple reflections from the expanding sheath in the longitudinal channels connected by the arc-like magnetic field. The electron heating in the transverse channel is caused mostly by the essentially collisionless Hall heating in the EMCR above the racetrack, generating a strong E × B azimuthal drift velocity. The latter mechanism results in an efficient electron energization, i.e. energy transfer from the electric field to electrons in the inelastic range. Since the main electron population energized by this mechanism remains confined within the discharge for a long time, its contribution to the ionization processes is dominant.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/acc47f</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>electron heating ; electron transport ; magnetized plasma ; magnetized rf discharge ; magnetron</subject><ispartof>Plasma sources science &amp; technology, 2023-04, Vol.32 (4), p.45008</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e3624c464439682f0f45b269d1011c1032e5db248ed67dd7da8ff3523240f9fb3</citedby><cites>FETCH-LOGICAL-c322t-e3624c464439682f0f45b269d1011c1032e5db248ed67dd7da8ff3523240f9fb3</cites><orcidid>0000-0002-8729-1984 ; 0000-0001-5160-6385 ; 0000-0003-2532-0193 ; 0000-0001-7929-5734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/acc47f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Eremin, D</creatorcontrib><creatorcontrib>Berger, B</creatorcontrib><creatorcontrib>Engel, D</creatorcontrib><creatorcontrib>Kallähn, J</creatorcontrib><creatorcontrib>Köhn, K</creatorcontrib><creatorcontrib>Krüger, D</creatorcontrib><creatorcontrib>Xu, L</creatorcontrib><creatorcontrib>Oberberg, M</creatorcontrib><creatorcontrib>Wölfel, C</creatorcontrib><creatorcontrib>Lunze, J</creatorcontrib><creatorcontrib>Awakowicz, P</creatorcontrib><creatorcontrib>Schulze, J</creatorcontrib><creatorcontrib>Brinkmann, R P</creatorcontrib><title>Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>The present work investigates electron transport and heating mechanisms using an ( r ,  z ) particle-in-cell simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. Due to a strong geometric asymmetry and a blocking capacitor, the discharge features a large negative self-bias conducive to sputtering applications. Employing decomposition of the electron transport parallel and perpendicular to the magnetic field lines, it is shown that for the considered magnetic field topology the electron current flows through different channels in the ( r ,  z ) plane: a ‘transverse’ one, which involves current flow through the electrons’ magnetic confinement region (EMCR) above the racetrack, and two ‘longitudinal’ ones, where electrons’ guiding centers move along the magnetic field lines. Electrons gain energy from the electric field along these channels following various mechanisms, which are rather distinct from those sustaining dc-powered magnetrons. The longitudinal power absorption involves mirror-effect heating (MEH), nonlinear electron resonance heating, magnetized bounce heating (MBH), and the heating by the ambipolar field at the sheath-presheath interface. The MEH and MBH represent two new mechanisms missing from the previous literature. The MEH is caused by a reversed electric field needed to overcome the mirror force generated in a nonuniform magnetic field to ensure sufficient flux of electrons to the powered electrode, and the MBH is related to a possibility for an electron to undergo multiple reflections from the expanding sheath in the longitudinal channels connected by the arc-like magnetic field. The electron heating in the transverse channel is caused mostly by the essentially collisionless Hall heating in the EMCR above the racetrack, generating a strong E × B azimuthal drift velocity. The latter mechanism results in an efficient electron energization, i.e. energy transfer from the electric field to electrons in the inelastic range. Since the main electron population energized by this mechanism remains confined within the discharge for a long time, its contribution to the ionization processes is dominant.</description><subject>electron heating</subject><subject>electron transport</subject><subject>magnetized plasma</subject><subject>magnetized rf discharge</subject><subject>magnetron</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1PwkAQhjdGExG9e5wfYGE_2tJ6MwSFBONFz82wO4tL2i3uFhL8K_5ZixhvniZ587yTmYexW8FHghfFWKhcJHlWZmPUOp3YMzb4i87ZgJe5SrjM5CW7inHDuRCFnAzY16wm3YXWgzl4bJyO4Dxsa_QYIKBxLdhAHzvy-gANrj39wD0QG4z3sFiMYE7YOb8G9AbIU1i7zz7oqYb0O3oXmwix2xlHBvYOAUEatYcths7pmhLnE011PX5ufUcwxVC3oFtD1-zCYh3p5ncO2dvj7HU6T5YvT4vpwzLRSsouIZXLVKd5mqoyL6TlNs1WMi-N6J_UgitJmVnJtCCTT4yZGCysVZlUMuW2tCs1ZPy0V4c2xkC22gbXYDhUgldHudXRZHU0WZ3k9pW7U8W122rT7oLvD_wf_wYtaH3J</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Eremin, D</creator><creator>Berger, B</creator><creator>Engel, D</creator><creator>Kallähn, J</creator><creator>Köhn, K</creator><creator>Krüger, D</creator><creator>Xu, L</creator><creator>Oberberg, M</creator><creator>Wölfel, C</creator><creator>Lunze, J</creator><creator>Awakowicz, P</creator><creator>Schulze, J</creator><creator>Brinkmann, R P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8729-1984</orcidid><orcidid>https://orcid.org/0000-0001-5160-6385</orcidid><orcidid>https://orcid.org/0000-0003-2532-0193</orcidid><orcidid>https://orcid.org/0000-0001-7929-5734</orcidid></search><sort><creationdate>20230401</creationdate><title>Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code</title><author>Eremin, D ; Berger, B ; Engel, D ; Kallähn, J ; Köhn, K ; Krüger, D ; Xu, L ; Oberberg, M ; Wölfel, C ; Lunze, J ; Awakowicz, P ; Schulze, J ; Brinkmann, R P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e3624c464439682f0f45b269d1011c1032e5db248ed67dd7da8ff3523240f9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>electron heating</topic><topic>electron transport</topic><topic>magnetized plasma</topic><topic>magnetized rf discharge</topic><topic>magnetron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eremin, D</creatorcontrib><creatorcontrib>Berger, B</creatorcontrib><creatorcontrib>Engel, D</creatorcontrib><creatorcontrib>Kallähn, J</creatorcontrib><creatorcontrib>Köhn, K</creatorcontrib><creatorcontrib>Krüger, D</creatorcontrib><creatorcontrib>Xu, L</creatorcontrib><creatorcontrib>Oberberg, M</creatorcontrib><creatorcontrib>Wölfel, C</creatorcontrib><creatorcontrib>Lunze, J</creatorcontrib><creatorcontrib>Awakowicz, P</creatorcontrib><creatorcontrib>Schulze, J</creatorcontrib><creatorcontrib>Brinkmann, R P</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eremin, D</au><au>Berger, B</au><au>Engel, D</au><au>Kallähn, J</au><au>Köhn, K</au><au>Krüger, D</au><au>Xu, L</au><au>Oberberg, M</au><au>Wölfel, C</au><au>Lunze, J</au><au>Awakowicz, P</au><au>Schulze, J</au><au>Brinkmann, R P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>45008</spage><pages>45008-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>The present work investigates electron transport and heating mechanisms using an ( r ,  z ) particle-in-cell simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. Due to a strong geometric asymmetry and a blocking capacitor, the discharge features a large negative self-bias conducive to sputtering applications. Employing decomposition of the electron transport parallel and perpendicular to the magnetic field lines, it is shown that for the considered magnetic field topology the electron current flows through different channels in the ( r ,  z ) plane: a ‘transverse’ one, which involves current flow through the electrons’ magnetic confinement region (EMCR) above the racetrack, and two ‘longitudinal’ ones, where electrons’ guiding centers move along the magnetic field lines. Electrons gain energy from the electric field along these channels following various mechanisms, which are rather distinct from those sustaining dc-powered magnetrons. The longitudinal power absorption involves mirror-effect heating (MEH), nonlinear electron resonance heating, magnetized bounce heating (MBH), and the heating by the ambipolar field at the sheath-presheath interface. The MEH and MBH represent two new mechanisms missing from the previous literature. The MEH is caused by a reversed electric field needed to overcome the mirror force generated in a nonuniform magnetic field to ensure sufficient flux of electrons to the powered electrode, and the MBH is related to a possibility for an electron to undergo multiple reflections from the expanding sheath in the longitudinal channels connected by the arc-like magnetic field. The electron heating in the transverse channel is caused mostly by the essentially collisionless Hall heating in the EMCR above the racetrack, generating a strong E × B azimuthal drift velocity. The latter mechanism results in an efficient electron energization, i.e. energy transfer from the electric field to electrons in the inelastic range. Since the main electron population energized by this mechanism remains confined within the discharge for a long time, its contribution to the ionization processes is dominant.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/acc47f</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8729-1984</orcidid><orcidid>https://orcid.org/0000-0001-5160-6385</orcidid><orcidid>https://orcid.org/0000-0003-2532-0193</orcidid><orcidid>https://orcid.org/0000-0001-7929-5734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2023-04, Vol.32 (4), p.45008
issn 0963-0252
1361-6595
language eng
recordid cdi_iop_journals_10_1088_1361_6595_acc47f
source Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects electron heating
electron transport
magnetized plasma
magnetized rf discharge
magnetron
title Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20dynamics%20in%20planar%20radio%20frequency%20magnetron%20plasmas:%20II.%20Heating%20and%20energization%20mechanisms%20studied%20via%20a%202d3v%20particle-in-cell/Monte%20Carlo%20code&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Eremin,%20D&rft.date=2023-04-01&rft.volume=32&rft.issue=4&rft.spage=45008&rft.pages=45008-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/acc47f&rft_dat=%3Ciop_cross%3Epsstacc47f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true