Practical analysis of different neutral algorithms for particle simulation of Hall thruster
The modeling of neutral atoms is important for the full-particle simulations of Hall thrusters. In previous studies, researchers have developed various algorithms to model the neutral kinetics. The choice of those algorithms can influence significantly the computational speed, simulation convergence...
Gespeichert in:
Veröffentlicht in: | Plasma sources science & technology 2023-03, Vol.32 (3), p.34005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 34005 |
container_title | Plasma sources science & technology |
container_volume | 32 |
creator | Pan, Ruojian Ren, Junxue Mao, Renfan Tang, Haibin |
description | The modeling of neutral atoms is important for the full-particle simulations of Hall thrusters. In previous studies, researchers have developed various algorithms to model the neutral kinetics. The choice of those algorithms can influence significantly the computational speed, simulation convergence, and physical results. In this work, we perform a full-particle simulation of a typical 1 kW-class SPT-100 Hall thruster using four neutral algorithms, including the fixed-neutral algorithm (FNA), the algorithm of direct simulation of Monte Carlo (DSMC), the collisionless-neutral algorithm (CLNA), and the fluid algorithm (FA), to analyze the effects of different neutral iteration approaches on the simulation results. We found that FNA is sensitive to the initial number density of neutrals, and is difficult to converge properly, while the other algorithms not neglecting the atomic dynamics can get stable results. We count the parameters of the thruster, that is, thrust, specific impulse, and plasma density using different neutral algorithms. The time-averaged results match well with those of the experiment. However, the results differ in the time scale due to the low-frequency oscillations in Hall thrusters. We verify that the oscillations are due to the periodic change of neutrals and establish a zero-dimensional model to analyze the properties of the oscillations in the time scale. It indicates that the ratio of ion migration to neutral migration is the essential factor that significantly affects the calculation results. The model reveals that the direct neutral iteration methods, like DSMC and CLNA, can better simulate the characteristics of discharge fluctuations in Hall thrusters than the quasi-steady-state method, like FA. Finally, we proposed practical suggestions for the selection of the neutral algorithms for the SPT-100 thruster, which can also be generalized to other low- and medium-power Hall thrusters. |
doi_str_mv | 10.1088/1361-6595/acc134 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_acc134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstacc134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a2ea2d2e489aff6c441ec10cca4ef35db748aa96a213705bd65137e075b218003</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM3pkIPRsx_kYUQUtUiUYYGKwro5NXblJZDtD_z2JiphgutPd-5x0DyG3DB4YVNWCiYJlhazlArVmIj8js9_ROZlBXYgMuOSX5CrGPQBjFS9n5PMtoE5Oo6fYoj9GF2lnaeOsNcG0ibZmSGHa-q8uuLQ7RGq7QHsMI-UNje4weEyuaydujd7TtAtDTCZckwuLPpqbnzonH89P78t1tnldvSwfN5kWTKQMuUHecJNXNVpb6DxnRjPQGnNjhWy2ZV4h1gVyJkqQ26aQY2OglFvOKgAxJ3C6q0MXYzBW9cEdMBwVAzXJUZMJNZlQJzkjcndCXNerfTeE8feo-hiTElwJBSIHkKpv7Bi9_yP67-VvJPB1SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Practical analysis of different neutral algorithms for particle simulation of Hall thruster</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Pan, Ruojian ; Ren, Junxue ; Mao, Renfan ; Tang, Haibin</creator><creatorcontrib>Pan, Ruojian ; Ren, Junxue ; Mao, Renfan ; Tang, Haibin</creatorcontrib><description>The modeling of neutral atoms is important for the full-particle simulations of Hall thrusters. In previous studies, researchers have developed various algorithms to model the neutral kinetics. The choice of those algorithms can influence significantly the computational speed, simulation convergence, and physical results. In this work, we perform a full-particle simulation of a typical 1 kW-class SPT-100 Hall thruster using four neutral algorithms, including the fixed-neutral algorithm (FNA), the algorithm of direct simulation of Monte Carlo (DSMC), the collisionless-neutral algorithm (CLNA), and the fluid algorithm (FA), to analyze the effects of different neutral iteration approaches on the simulation results. We found that FNA is sensitive to the initial number density of neutrals, and is difficult to converge properly, while the other algorithms not neglecting the atomic dynamics can get stable results. We count the parameters of the thruster, that is, thrust, specific impulse, and plasma density using different neutral algorithms. The time-averaged results match well with those of the experiment. However, the results differ in the time scale due to the low-frequency oscillations in Hall thrusters. We verify that the oscillations are due to the periodic change of neutrals and establish a zero-dimensional model to analyze the properties of the oscillations in the time scale. It indicates that the ratio of ion migration to neutral migration is the essential factor that significantly affects the calculation results. The model reveals that the direct neutral iteration methods, like DSMC and CLNA, can better simulate the characteristics of discharge fluctuations in Hall thrusters than the quasi-steady-state method, like FA. Finally, we proposed practical suggestions for the selection of the neutral algorithms for the SPT-100 thruster, which can also be generalized to other low- and medium-power Hall thrusters.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/acc134</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>full-particle simulation ; Hall thruster ; low-frequency oscillation ; neutral iterations ; quasi-steady-state algorithm</subject><ispartof>Plasma sources science & technology, 2023-03, Vol.32 (3), p.34005</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a2ea2d2e489aff6c441ec10cca4ef35db748aa96a213705bd65137e075b218003</citedby><cites>FETCH-LOGICAL-c313t-a2ea2d2e489aff6c441ec10cca4ef35db748aa96a213705bd65137e075b218003</cites><orcidid>0000-0002-8021-1988 ; 0000-0002-9190-7323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/acc134/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Pan, Ruojian</creatorcontrib><creatorcontrib>Ren, Junxue</creatorcontrib><creatorcontrib>Mao, Renfan</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><title>Practical analysis of different neutral algorithms for particle simulation of Hall thruster</title><title>Plasma sources science & technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>The modeling of neutral atoms is important for the full-particle simulations of Hall thrusters. In previous studies, researchers have developed various algorithms to model the neutral kinetics. The choice of those algorithms can influence significantly the computational speed, simulation convergence, and physical results. In this work, we perform a full-particle simulation of a typical 1 kW-class SPT-100 Hall thruster using four neutral algorithms, including the fixed-neutral algorithm (FNA), the algorithm of direct simulation of Monte Carlo (DSMC), the collisionless-neutral algorithm (CLNA), and the fluid algorithm (FA), to analyze the effects of different neutral iteration approaches on the simulation results. We found that FNA is sensitive to the initial number density of neutrals, and is difficult to converge properly, while the other algorithms not neglecting the atomic dynamics can get stable results. We count the parameters of the thruster, that is, thrust, specific impulse, and plasma density using different neutral algorithms. The time-averaged results match well with those of the experiment. However, the results differ in the time scale due to the low-frequency oscillations in Hall thrusters. We verify that the oscillations are due to the periodic change of neutrals and establish a zero-dimensional model to analyze the properties of the oscillations in the time scale. It indicates that the ratio of ion migration to neutral migration is the essential factor that significantly affects the calculation results. The model reveals that the direct neutral iteration methods, like DSMC and CLNA, can better simulate the characteristics of discharge fluctuations in Hall thrusters than the quasi-steady-state method, like FA. Finally, we proposed practical suggestions for the selection of the neutral algorithms for the SPT-100 thruster, which can also be generalized to other low- and medium-power Hall thrusters.</description><subject>full-particle simulation</subject><subject>Hall thruster</subject><subject>low-frequency oscillation</subject><subject>neutral iterations</subject><subject>quasi-steady-state algorithm</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM3pkIPRsx_kYUQUtUiUYYGKwro5NXblJZDtD_z2JiphgutPd-5x0DyG3DB4YVNWCiYJlhazlArVmIj8js9_ROZlBXYgMuOSX5CrGPQBjFS9n5PMtoE5Oo6fYoj9GF2lnaeOsNcG0ibZmSGHa-q8uuLQ7RGq7QHsMI-UNje4weEyuaydujd7TtAtDTCZckwuLPpqbnzonH89P78t1tnldvSwfN5kWTKQMuUHecJNXNVpb6DxnRjPQGnNjhWy2ZV4h1gVyJkqQ26aQY2OglFvOKgAxJ3C6q0MXYzBW9cEdMBwVAzXJUZMJNZlQJzkjcndCXNerfTeE8feo-hiTElwJBSIHkKpv7Bi9_yP67-VvJPB1SA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Pan, Ruojian</creator><creator>Ren, Junxue</creator><creator>Mao, Renfan</creator><creator>Tang, Haibin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8021-1988</orcidid><orcidid>https://orcid.org/0000-0002-9190-7323</orcidid></search><sort><creationdate>20230301</creationdate><title>Practical analysis of different neutral algorithms for particle simulation of Hall thruster</title><author>Pan, Ruojian ; Ren, Junxue ; Mao, Renfan ; Tang, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a2ea2d2e489aff6c441ec10cca4ef35db748aa96a213705bd65137e075b218003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>full-particle simulation</topic><topic>Hall thruster</topic><topic>low-frequency oscillation</topic><topic>neutral iterations</topic><topic>quasi-steady-state algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Ruojian</creatorcontrib><creatorcontrib>Ren, Junxue</creatorcontrib><creatorcontrib>Mao, Renfan</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Ruojian</au><au>Ren, Junxue</au><au>Mao, Renfan</au><au>Tang, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical analysis of different neutral algorithms for particle simulation of Hall thruster</atitle><jtitle>Plasma sources science & technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>32</volume><issue>3</issue><spage>34005</spage><pages>34005-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>The modeling of neutral atoms is important for the full-particle simulations of Hall thrusters. In previous studies, researchers have developed various algorithms to model the neutral kinetics. The choice of those algorithms can influence significantly the computational speed, simulation convergence, and physical results. In this work, we perform a full-particle simulation of a typical 1 kW-class SPT-100 Hall thruster using four neutral algorithms, including the fixed-neutral algorithm (FNA), the algorithm of direct simulation of Monte Carlo (DSMC), the collisionless-neutral algorithm (CLNA), and the fluid algorithm (FA), to analyze the effects of different neutral iteration approaches on the simulation results. We found that FNA is sensitive to the initial number density of neutrals, and is difficult to converge properly, while the other algorithms not neglecting the atomic dynamics can get stable results. We count the parameters of the thruster, that is, thrust, specific impulse, and plasma density using different neutral algorithms. The time-averaged results match well with those of the experiment. However, the results differ in the time scale due to the low-frequency oscillations in Hall thrusters. We verify that the oscillations are due to the periodic change of neutrals and establish a zero-dimensional model to analyze the properties of the oscillations in the time scale. It indicates that the ratio of ion migration to neutral migration is the essential factor that significantly affects the calculation results. The model reveals that the direct neutral iteration methods, like DSMC and CLNA, can better simulate the characteristics of discharge fluctuations in Hall thrusters than the quasi-steady-state method, like FA. Finally, we proposed practical suggestions for the selection of the neutral algorithms for the SPT-100 thruster, which can also be generalized to other low- and medium-power Hall thrusters.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/acc134</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8021-1988</orcidid><orcidid>https://orcid.org/0000-0002-9190-7323</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-0252 |
ispartof | Plasma sources science & technology, 2023-03, Vol.32 (3), p.34005 |
issn | 0963-0252 1361-6595 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6595_acc134 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | full-particle simulation Hall thruster low-frequency oscillation neutral iterations quasi-steady-state algorithm |
title | Practical analysis of different neutral algorithms for particle simulation of Hall thruster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20analysis%20of%20different%20neutral%20algorithms%20for%20particle%20simulation%20of%20Hall%20thruster&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Pan,%20Ruojian&rft.date=2023-03-01&rft.volume=32&rft.issue=3&rft.spage=34005&rft.pages=34005-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/acc134&rft_dat=%3Ciop_cross%3Epsstacc134%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |