Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning
Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a co...
Gespeichert in:
Veröffentlicht in: | Plasma sources science & technology 2020-08, Vol.29 (8), p.85018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85018 |
container_title | Plasma sources science & technology |
container_volume | 29 |
creator | Vincent, Jordan Wang, Hui Nibouche, Omar Maguire, Paul |
description | Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring. |
doi_str_mv | 10.1088/1361-6595/aba488 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_aba488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstaba488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jzl6cG2y2WTTo9RPKHjpPWSzEzdlP0KSVvzvTa140sMwMLz3ePND6JqSO0qkXFAmaCH4ki90oyspT9Ds93SKZmQpWEFKXp6jixi3hFAqy3qGugdIYJIb33EK2gAeIHV6BNzDHvqIP1zqsO91HDSefHJG9xgGF6ObRhx9toYpmsl_Yj22OO48hL2L0OJBm8595-gw5vhLdGZ1H-HqZ8_R5ulxs3op1m_Pr6v7dWEY56kAW0sthKGlaAizgnGQopVC1pxLWkKdf102orKaWSIrK4BxwqmuRJ7GsDkix1iTe8UAVvngBh0-FSXqAEodqKgDFXUElS03R4ubvNpOuzDmfsrHmFS5VFIRyQmVyrc2S2__kP6b_AWQnHmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vincent, Jordan ; Wang, Hui ; Nibouche, Omar ; Maguire, Paul</creator><creatorcontrib>Vincent, Jordan ; Wang, Hui ; Nibouche, Omar ; Maguire, Paul</creatorcontrib><description>Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/aba488</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cold atmospheric plasma ; machine learning ; methane detection ; partial least squares</subject><ispartof>Plasma sources science & technology, 2020-08, Vol.29 (8), p.85018</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</citedby><cites>FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</cites><orcidid>0000-0002-6651-5395 ; 0000-0002-2725-4647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/aba488/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Vincent, Jordan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Nibouche, Omar</creatorcontrib><creatorcontrib>Maguire, Paul</creatorcontrib><title>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</title><title>Plasma sources science & technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.</description><subject>cold atmospheric plasma</subject><subject>machine learning</subject><subject>methane detection</subject><subject>partial least squares</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jzl6cG2y2WTTo9RPKHjpPWSzEzdlP0KSVvzvTa140sMwMLz3ePND6JqSO0qkXFAmaCH4ki90oyspT9Ds93SKZmQpWEFKXp6jixi3hFAqy3qGugdIYJIb33EK2gAeIHV6BNzDHvqIP1zqsO91HDSefHJG9xgGF6ObRhx9toYpmsl_Yj22OO48hL2L0OJBm8595-gw5vhLdGZ1H-HqZ8_R5ulxs3op1m_Pr6v7dWEY56kAW0sthKGlaAizgnGQopVC1pxLWkKdf102orKaWSIrK4BxwqmuRJ7GsDkix1iTe8UAVvngBh0-FSXqAEodqKgDFXUElS03R4ubvNpOuzDmfsrHmFS5VFIRyQmVyrc2S2__kP6b_AWQnHmK</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vincent, Jordan</creator><creator>Wang, Hui</creator><creator>Nibouche, Omar</creator><creator>Maguire, Paul</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6651-5395</orcidid><orcidid>https://orcid.org/0000-0002-2725-4647</orcidid></search><sort><creationdate>20200801</creationdate><title>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</title><author>Vincent, Jordan ; Wang, Hui ; Nibouche, Omar ; Maguire, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cold atmospheric plasma</topic><topic>machine learning</topic><topic>methane detection</topic><topic>partial least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincent, Jordan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Nibouche, Omar</creatorcontrib><creatorcontrib>Maguire, Paul</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Plasma sources science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincent, Jordan</au><au>Wang, Hui</au><au>Nibouche, Omar</au><au>Maguire, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</atitle><jtitle>Plasma sources science & technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>29</volume><issue>8</issue><spage>85018</spage><pages>85018-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/aba488</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6651-5395</orcidid><orcidid>https://orcid.org/0000-0002-2725-4647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-0252 |
ispartof | Plasma sources science & technology, 2020-08, Vol.29 (8), p.85018 |
issn | 0963-0252 1361-6595 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6595_aba488 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | cold atmospheric plasma machine learning methane detection partial least squares |
title | Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20trace%20methane%20levels%20with%20plasma%20optical%20emission%20spectroscopy%20and%20supervised%20machine%20learning&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Vincent,%20Jordan&rft.date=2020-08-01&rft.volume=29&rft.issue=8&rft.spage=85018&rft.pages=85018-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/aba488&rft_dat=%3Ciop_cross%3Epsstaba488%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |