Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning

Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma sources science & technology 2020-08, Vol.29 (8), p.85018
Hauptverfasser: Vincent, Jordan, Wang, Hui, Nibouche, Omar, Maguire, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85018
container_title Plasma sources science & technology
container_volume 29
creator Vincent, Jordan
Wang, Hui
Nibouche, Omar
Maguire, Paul
description Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.
doi_str_mv 10.1088/1361-6595/aba488
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_aba488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstaba488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jzl6cG2y2WTTo9RPKHjpPWSzEzdlP0KSVvzvTa140sMwMLz3ePND6JqSO0qkXFAmaCH4ki90oyspT9Ds93SKZmQpWEFKXp6jixi3hFAqy3qGugdIYJIb33EK2gAeIHV6BNzDHvqIP1zqsO91HDSefHJG9xgGF6ObRhx9toYpmsl_Yj22OO48hL2L0OJBm8595-gw5vhLdGZ1H-HqZ8_R5ulxs3op1m_Pr6v7dWEY56kAW0sthKGlaAizgnGQopVC1pxLWkKdf102orKaWSIrK4BxwqmuRJ7GsDkix1iTe8UAVvngBh0-FSXqAEodqKgDFXUElS03R4ubvNpOuzDmfsrHmFS5VFIRyQmVyrc2S2__kP6b_AWQnHmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vincent, Jordan ; Wang, Hui ; Nibouche, Omar ; Maguire, Paul</creator><creatorcontrib>Vincent, Jordan ; Wang, Hui ; Nibouche, Omar ; Maguire, Paul</creatorcontrib><description>Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/aba488</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cold atmospheric plasma ; machine learning ; methane detection ; partial least squares</subject><ispartof>Plasma sources science &amp; technology, 2020-08, Vol.29 (8), p.85018</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</citedby><cites>FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</cites><orcidid>0000-0002-6651-5395 ; 0000-0002-2725-4647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6595/aba488/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Vincent, Jordan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Nibouche, Omar</creatorcontrib><creatorcontrib>Maguire, Paul</creatorcontrib><title>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.</description><subject>cold atmospheric plasma</subject><subject>machine learning</subject><subject>methane detection</subject><subject>partial least squares</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jzl6cG2y2WTTo9RPKHjpPWSzEzdlP0KSVvzvTa140sMwMLz3ePND6JqSO0qkXFAmaCH4ki90oyspT9Ds93SKZmQpWEFKXp6jixi3hFAqy3qGugdIYJIb33EK2gAeIHV6BNzDHvqIP1zqsO91HDSefHJG9xgGF6ObRhx9toYpmsl_Yj22OO48hL2L0OJBm8595-gw5vhLdGZ1H-HqZ8_R5ulxs3op1m_Pr6v7dWEY56kAW0sthKGlaAizgnGQopVC1pxLWkKdf102orKaWSIrK4BxwqmuRJ7GsDkix1iTe8UAVvngBh0-FSXqAEodqKgDFXUElS03R4ubvNpOuzDmfsrHmFS5VFIRyQmVyrc2S2__kP6b_AWQnHmK</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vincent, Jordan</creator><creator>Wang, Hui</creator><creator>Nibouche, Omar</creator><creator>Maguire, Paul</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6651-5395</orcidid><orcidid>https://orcid.org/0000-0002-2725-4647</orcidid></search><sort><creationdate>20200801</creationdate><title>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</title><author>Vincent, Jordan ; Wang, Hui ; Nibouche, Omar ; Maguire, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ef78a66c126b03f635e86d868755812e70889b64fa3f084f6e35051a461a4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cold atmospheric plasma</topic><topic>machine learning</topic><topic>methane detection</topic><topic>partial least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincent, Jordan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Nibouche, Omar</creatorcontrib><creatorcontrib>Maguire, Paul</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincent, Jordan</au><au>Wang, Hui</au><au>Nibouche, Omar</au><au>Maguire, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>29</volume><issue>8</issue><spage>85018</spage><pages>85018-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-equilibrium conditions, producing spectra with a complex and variable sensitivity to trace levels of added gases. A data-driven machine learning approach based on partial least squares discriminant analysis was implemented for CH4 concentrations up to 100 ppm in He, to provide binary classification of samples above or below a threshold of 2 ppm. With a low-resolution spectrometer and a custom spectral alignment procedure, a prediction accuracy of 98% was achieved, demonstrating the power of machine learning with otherwise prohibitively complex spectral analysis. This work establishes proof of principle for low cost and high-resolution trace gas detection with the potential for field deployment and autonomous remote monitoring.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/aba488</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6651-5395</orcidid><orcidid>https://orcid.org/0000-0002-2725-4647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2020-08, Vol.29 (8), p.85018
issn 0963-0252
1361-6595
language eng
recordid cdi_iop_journals_10_1088_1361_6595_aba488
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects cold atmospheric plasma
machine learning
methane detection
partial least squares
title Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20trace%20methane%20levels%20with%20plasma%20optical%20emission%20spectroscopy%20and%20supervised%20machine%20learning&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Vincent,%20Jordan&rft.date=2020-08-01&rft.volume=29&rft.issue=8&rft.spage=85018&rft.pages=85018-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/aba488&rft_dat=%3Ciop_cross%3Epsstaba488%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true