Overview of results from the 2023 DIII-D negative triangularity campaign

Negative triangularity (NT) is a potentially transformative configuration for tokamak-based fusion energy with its high-performance core, edge localized mode (ELM)-free edge, and low-field-side divertors that could readily scale to an integrated reactor solution. Previous NT work on the TCV and DIII...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics and controlled fusion 2024-10, Vol.66 (10), p.105018
Hauptverfasser: Thome, K E, Austin, M E, Hyatt, A, Marinoni, A, Nelson, A O, Paz-Soldan, C, Scotti, F, Boyes, W, Casali, L, Chrystal, C, Ding, S, Du, X D, Eldon, D, Ernst, D, Hong, R, McKee, G R, Mordijck, S, Sauter, O, Schmitz, L, Barr, J L, Burke, M G, Coda, S, Cote, T B, Fenstermacher, M E, Garofalo, A, Khabanov, F O, Kramer, G J, Lasnier, C J, Logan, N C, Lunia, P, McLean, A G, Okabayashi, M, Shiraki, D, Stewart, S, Takemura, Y, Truong, D D, Osborne, T, Van Zeeland, M A, Victor, B S, Wang, H Q, Watkins, J G, Wehner, W P, Welander, A S, Wilks, T M, Yang, J, Yu, G, Zeng, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105018
container_title Plasma physics and controlled fusion
container_volume 66
creator Thome, K E
Austin, M E
Hyatt, A
Marinoni, A
Nelson, A O
Paz-Soldan, C
Scotti, F
Boyes, W
Casali, L
Chrystal, C
Ding, S
Du, X D
Eldon, D
Ernst, D
Hong, R
McKee, G R
Mordijck, S
Sauter, O
Schmitz, L
Barr, J L
Burke, M G
Coda, S
Cote, T B
Fenstermacher, M E
Garofalo, A
Khabanov, F O
Kramer, G J
Lasnier, C J
Logan, N C
Lunia, P
McLean, A G
Okabayashi, M
Shiraki, D
Stewart, S
Takemura, Y
Truong, D D
Osborne, T
Van Zeeland, M A
Victor, B S
Wang, H Q
Watkins, J G
Wehner, W P
Welander, A S
Wilks, T M
Yang, J
Yu, G
Zeng, L
description Negative triangularity (NT) is a potentially transformative configuration for tokamak-based fusion energy with its high-performance core, edge localized mode (ELM)-free edge, and low-field-side divertors that could readily scale to an integrated reactor solution. Previous NT work on the TCV and DIII-D tokamaks motivated the installation of graphite-tile armor on the low-field-side lower outer wall of DIII-D. A dedicated multiple-week experimental campaign was conducted to qualify the NT scenario for future reactors. During the DIII-D NT campaign, high confinement ( H 98 y , 2 ≳ 1), high current ( q 95 < 3), and high normalized pressure plasmas ( β N > 2.5) were simultaneously attained in strongly NT-shaped discharges with average triangularity δ avg = −0.5 that were stably controlled. Experiments covered a wide range of DIII-D operational space (plasma current, toroidal field, electron density and pressure) and did not trigger an ELM in a single discharge as long as sufficiently strong NT was maintained; in contrast, to other high-performance ELM-suppression scenarios that have narrower operating windows. These strong NT plasmas had a lower outer divertor X-point shape and maintained a non-ELMing edge with an electron temperature pedestal, exceeding that of typical L-mode plasmas. Also, the following was achieved during the campaign: high normalized density ( n e / n GW of at least 1.7), particle confinement comparable to energy confinement with Z eff ∼ 2 , a detached divertor without impurity seeding, and a mantle radiation scenario using extrinsic impurities. These results are promising for a NT fusion pilot plant but further questions on confinement extrapolation and core-edge integration remain, which motivate future NT studies on DIII-D and beyond.
doi_str_mv 10.1088/1361-6587/ad6f40
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6587_ad6f40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ppcfad6f40</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-692772c9c826c194c791033293d752d25c6607429bcdaf2f91681340c846f5de3</originalsourceid><addsrcrecordid>eNp1kM9PwjAUxxujiYjePTaenbSvW7cdDYgsIeGi56a-tVACK2kLhv_ekRlvnl7y8vm-Hx9CHjl74ayqJlxInsmiKie6lTZnV2T017omI1bmPBNCFLfkLsYtY5xXIEdksTqZcHLmm3pLg4nHXYrUBr-naWMoMBB01jRNNqOdWevkToam4HS3Pu50cOlMUe8P2q27e3Jj9S6ah986Jp_zt4_pIluu3pvp6zJDEJAyWUNZAtbYb0de51jWnAkBtWjLAlooUMr-Vqi_sNUWbM1lxUXOsMqlLVojxuRpmOtjciqiSwY36LvOYFKQCygE6yE2QBh8jMFYdQhur8NZcaYuutTFjbq4UYOuPvI8RJw_qK0_hq7_4n_8B2u9aOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Overview of results from the 2023 DIII-D negative triangularity campaign</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Thome, K E ; Austin, M E ; Hyatt, A ; Marinoni, A ; Nelson, A O ; Paz-Soldan, C ; Scotti, F ; Boyes, W ; Casali, L ; Chrystal, C ; Ding, S ; Du, X D ; Eldon, D ; Ernst, D ; Hong, R ; McKee, G R ; Mordijck, S ; Sauter, O ; Schmitz, L ; Barr, J L ; Burke, M G ; Coda, S ; Cote, T B ; Fenstermacher, M E ; Garofalo, A ; Khabanov, F O ; Kramer, G J ; Lasnier, C J ; Logan, N C ; Lunia, P ; McLean, A G ; Okabayashi, M ; Shiraki, D ; Stewart, S ; Takemura, Y ; Truong, D D ; Osborne, T ; Van Zeeland, M A ; Victor, B S ; Wang, H Q ; Watkins, J G ; Wehner, W P ; Welander, A S ; Wilks, T M ; Yang, J ; Yu, G ; Zeng, L</creator><creatorcontrib>Thome, K E ; Austin, M E ; Hyatt, A ; Marinoni, A ; Nelson, A O ; Paz-Soldan, C ; Scotti, F ; Boyes, W ; Casali, L ; Chrystal, C ; Ding, S ; Du, X D ; Eldon, D ; Ernst, D ; Hong, R ; McKee, G R ; Mordijck, S ; Sauter, O ; Schmitz, L ; Barr, J L ; Burke, M G ; Coda, S ; Cote, T B ; Fenstermacher, M E ; Garofalo, A ; Khabanov, F O ; Kramer, G J ; Lasnier, C J ; Logan, N C ; Lunia, P ; McLean, A G ; Okabayashi, M ; Shiraki, D ; Stewart, S ; Takemura, Y ; Truong, D D ; Osborne, T ; Van Zeeland, M A ; Victor, B S ; Wang, H Q ; Watkins, J G ; Wehner, W P ; Welander, A S ; Wilks, T M ; Yang, J ; Yu, G ; Zeng, L ; the DIII-D Team ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>Negative triangularity (NT) is a potentially transformative configuration for tokamak-based fusion energy with its high-performance core, edge localized mode (ELM)-free edge, and low-field-side divertors that could readily scale to an integrated reactor solution. Previous NT work on the TCV and DIII-D tokamaks motivated the installation of graphite-tile armor on the low-field-side lower outer wall of DIII-D. A dedicated multiple-week experimental campaign was conducted to qualify the NT scenario for future reactors. During the DIII-D NT campaign, high confinement ( H 98 y , 2 ≳ 1), high current ( q 95 &lt; 3), and high normalized pressure plasmas ( β N &gt; 2.5) were simultaneously attained in strongly NT-shaped discharges with average triangularity δ avg = −0.5 that were stably controlled. Experiments covered a wide range of DIII-D operational space (plasma current, toroidal field, electron density and pressure) and did not trigger an ELM in a single discharge as long as sufficiently strong NT was maintained; in contrast, to other high-performance ELM-suppression scenarios that have narrower operating windows. These strong NT plasmas had a lower outer divertor X-point shape and maintained a non-ELMing edge with an electron temperature pedestal, exceeding that of typical L-mode plasmas. Also, the following was achieved during the campaign: high normalized density ( n e / n GW of at least 1.7), particle confinement comparable to energy confinement with Z eff ∼ 2 , a detached divertor without impurity seeding, and a mantle radiation scenario using extrinsic impurities. These results are promising for a NT fusion pilot plant but further questions on confinement extrapolation and core-edge integration remain, which motivate future NT studies on DIII-D and beyond.</description><identifier>ISSN: 0741-3335</identifier><identifier>EISSN: 1361-6587</identifier><identifier>DOI: 10.1088/1361-6587/ad6f40</identifier><identifier>CODEN: PLPHBZ</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>confinement ; negative triangularity ; NT edge</subject><ispartof>Plasma physics and controlled fusion, 2024-10, Vol.66 (10), p.105018</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-692772c9c826c194c791033293d752d25c6607429bcdaf2f91681340c846f5de3</cites><orcidid>0000-0002-9612-1936 ; 0000-0002-1251-2922 ; 0000-0001-8537-4383 ; 0000-0001-6127-2825 ; 0000-0002-9577-2809 ; 0000-0003-1920-2799 ; 0000-0002-0196-9919 ; 0000-0001-7619-3724 ; 0000-0002-1452-6949 ; 0000-0002-0697-4397 ; 0000-0003-4750-8015 ; 0000-0002-8010-4971 ; 0000-0002-0099-6675 ; 0000-0003-1895-0648 ; 0000-0002-9675-678X ; 0000-0001-5069-4934 ; 0000-0002-1930-0439 ; 0000-0002-4801-3922 ; 0000-0002-8244-2448 ; 0000-0002-0017-8605 ; 0000-0003-1346-0914 ; 0000-0001-7768-5931 ; 0000-0003-2641-4597 ; 0000-0003-3049-8658 ; 0000-0002-2754-9816 ; 0000-0002-6020-7113 ; 0000-0003-3754-897X ; 0009-0005-5063-7047 ; 0000-0002-6930-4702 ; 0000-0002-0002-5342 ; 0000-0001-5105-8139 ; 0000-0002-9146-1544 ; 0000-0002-7911-2739 ; 0000-0003-3384-5280 ; 0000-0002-8573-2539 ; 0000-0003-1004-5782 ; 0000-0001-8422-8464 ; 0000-0002-7109-2278 ; 0000-0002-3268-7359 ; 0000-0001-5635-7330 ; 0000-0003-2924-3674 ; 0000000319202799 ; 0000000310045782 ; 0000000347508015 ; 0000000296121936 ; 0000000232687359 ; 0000000313460914 ; 0000000330498658 ; 0000000329243674 ; 0000000150694934 ; 0000000326414597 ; 0000000212512922 ; 0000000161272825 ; 000000033754897X ; 0000000318950648 ; 0000000227549816 ; 0000000248013922 ; 0000000200996675 ; 0000000200025342 ; 0000000260207113 ; 0000000291461544 ; 0000000280104971 ; 0000000156357330 ; 0000000151058139 ; 0000000282442448 ; 0000000219300439 ; 0000000177685931 ; 0000000271092278 ; 0000000269304702 ; 0000000279112739 ; 0000000184228464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6587/ad6f40/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2432530$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thome, K E</creatorcontrib><creatorcontrib>Austin, M E</creatorcontrib><creatorcontrib>Hyatt, A</creatorcontrib><creatorcontrib>Marinoni, A</creatorcontrib><creatorcontrib>Nelson, A O</creatorcontrib><creatorcontrib>Paz-Soldan, C</creatorcontrib><creatorcontrib>Scotti, F</creatorcontrib><creatorcontrib>Boyes, W</creatorcontrib><creatorcontrib>Casali, L</creatorcontrib><creatorcontrib>Chrystal, C</creatorcontrib><creatorcontrib>Ding, S</creatorcontrib><creatorcontrib>Du, X D</creatorcontrib><creatorcontrib>Eldon, D</creatorcontrib><creatorcontrib>Ernst, D</creatorcontrib><creatorcontrib>Hong, R</creatorcontrib><creatorcontrib>McKee, G R</creatorcontrib><creatorcontrib>Mordijck, S</creatorcontrib><creatorcontrib>Sauter, O</creatorcontrib><creatorcontrib>Schmitz, L</creatorcontrib><creatorcontrib>Barr, J L</creatorcontrib><creatorcontrib>Burke, M G</creatorcontrib><creatorcontrib>Coda, S</creatorcontrib><creatorcontrib>Cote, T B</creatorcontrib><creatorcontrib>Fenstermacher, M E</creatorcontrib><creatorcontrib>Garofalo, A</creatorcontrib><creatorcontrib>Khabanov, F O</creatorcontrib><creatorcontrib>Kramer, G J</creatorcontrib><creatorcontrib>Lasnier, C J</creatorcontrib><creatorcontrib>Logan, N C</creatorcontrib><creatorcontrib>Lunia, P</creatorcontrib><creatorcontrib>McLean, A G</creatorcontrib><creatorcontrib>Okabayashi, M</creatorcontrib><creatorcontrib>Shiraki, D</creatorcontrib><creatorcontrib>Stewart, S</creatorcontrib><creatorcontrib>Takemura, Y</creatorcontrib><creatorcontrib>Truong, D D</creatorcontrib><creatorcontrib>Osborne, T</creatorcontrib><creatorcontrib>Van Zeeland, M A</creatorcontrib><creatorcontrib>Victor, B S</creatorcontrib><creatorcontrib>Wang, H Q</creatorcontrib><creatorcontrib>Watkins, J G</creatorcontrib><creatorcontrib>Wehner, W P</creatorcontrib><creatorcontrib>Welander, A S</creatorcontrib><creatorcontrib>Wilks, T M</creatorcontrib><creatorcontrib>Yang, J</creatorcontrib><creatorcontrib>Yu, G</creatorcontrib><creatorcontrib>Zeng, L</creatorcontrib><creatorcontrib>the DIII-D Team</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Overview of results from the 2023 DIII-D negative triangularity campaign</title><title>Plasma physics and controlled fusion</title><addtitle>PPCF</addtitle><addtitle>Plasma Phys. Control. Fusion</addtitle><description>Negative triangularity (NT) is a potentially transformative configuration for tokamak-based fusion energy with its high-performance core, edge localized mode (ELM)-free edge, and low-field-side divertors that could readily scale to an integrated reactor solution. Previous NT work on the TCV and DIII-D tokamaks motivated the installation of graphite-tile armor on the low-field-side lower outer wall of DIII-D. A dedicated multiple-week experimental campaign was conducted to qualify the NT scenario for future reactors. During the DIII-D NT campaign, high confinement ( H 98 y , 2 ≳ 1), high current ( q 95 &lt; 3), and high normalized pressure plasmas ( β N &gt; 2.5) were simultaneously attained in strongly NT-shaped discharges with average triangularity δ avg = −0.5 that were stably controlled. Experiments covered a wide range of DIII-D operational space (plasma current, toroidal field, electron density and pressure) and did not trigger an ELM in a single discharge as long as sufficiently strong NT was maintained; in contrast, to other high-performance ELM-suppression scenarios that have narrower operating windows. These strong NT plasmas had a lower outer divertor X-point shape and maintained a non-ELMing edge with an electron temperature pedestal, exceeding that of typical L-mode plasmas. Also, the following was achieved during the campaign: high normalized density ( n e / n GW of at least 1.7), particle confinement comparable to energy confinement with Z eff ∼ 2 , a detached divertor without impurity seeding, and a mantle radiation scenario using extrinsic impurities. These results are promising for a NT fusion pilot plant but further questions on confinement extrapolation and core-edge integration remain, which motivate future NT studies on DIII-D and beyond.</description><subject>confinement</subject><subject>negative triangularity</subject><subject>NT edge</subject><issn>0741-3335</issn><issn>1361-6587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9PwjAUxxujiYjePTaenbSvW7cdDYgsIeGi56a-tVACK2kLhv_ekRlvnl7y8vm-Hx9CHjl74ayqJlxInsmiKie6lTZnV2T017omI1bmPBNCFLfkLsYtY5xXIEdksTqZcHLmm3pLg4nHXYrUBr-naWMoMBB01jRNNqOdWevkToam4HS3Pu50cOlMUe8P2q27e3Jj9S6ah986Jp_zt4_pIluu3pvp6zJDEJAyWUNZAtbYb0de51jWnAkBtWjLAlooUMr-Vqi_sNUWbM1lxUXOsMqlLVojxuRpmOtjciqiSwY36LvOYFKQCygE6yE2QBh8jMFYdQhur8NZcaYuutTFjbq4UYOuPvI8RJw_qK0_hq7_4n_8B2u9aOk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Thome, K E</creator><creator>Austin, M E</creator><creator>Hyatt, A</creator><creator>Marinoni, A</creator><creator>Nelson, A O</creator><creator>Paz-Soldan, C</creator><creator>Scotti, F</creator><creator>Boyes, W</creator><creator>Casali, L</creator><creator>Chrystal, C</creator><creator>Ding, S</creator><creator>Du, X D</creator><creator>Eldon, D</creator><creator>Ernst, D</creator><creator>Hong, R</creator><creator>McKee, G R</creator><creator>Mordijck, S</creator><creator>Sauter, O</creator><creator>Schmitz, L</creator><creator>Barr, J L</creator><creator>Burke, M G</creator><creator>Coda, S</creator><creator>Cote, T B</creator><creator>Fenstermacher, M E</creator><creator>Garofalo, A</creator><creator>Khabanov, F O</creator><creator>Kramer, G J</creator><creator>Lasnier, C J</creator><creator>Logan, N C</creator><creator>Lunia, P</creator><creator>McLean, A G</creator><creator>Okabayashi, M</creator><creator>Shiraki, D</creator><creator>Stewart, S</creator><creator>Takemura, Y</creator><creator>Truong, D D</creator><creator>Osborne, T</creator><creator>Van Zeeland, M A</creator><creator>Victor, B S</creator><creator>Wang, H Q</creator><creator>Watkins, J G</creator><creator>Wehner, W P</creator><creator>Welander, A S</creator><creator>Wilks, T M</creator><creator>Yang, J</creator><creator>Yu, G</creator><creator>Zeng, L</creator><general>IOP Publishing</general><general>IOP Science</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9612-1936</orcidid><orcidid>https://orcid.org/0000-0002-1251-2922</orcidid><orcidid>https://orcid.org/0000-0001-8537-4383</orcidid><orcidid>https://orcid.org/0000-0001-6127-2825</orcidid><orcidid>https://orcid.org/0000-0002-9577-2809</orcidid><orcidid>https://orcid.org/0000-0003-1920-2799</orcidid><orcidid>https://orcid.org/0000-0002-0196-9919</orcidid><orcidid>https://orcid.org/0000-0001-7619-3724</orcidid><orcidid>https://orcid.org/0000-0002-1452-6949</orcidid><orcidid>https://orcid.org/0000-0002-0697-4397</orcidid><orcidid>https://orcid.org/0000-0003-4750-8015</orcidid><orcidid>https://orcid.org/0000-0002-8010-4971</orcidid><orcidid>https://orcid.org/0000-0002-0099-6675</orcidid><orcidid>https://orcid.org/0000-0003-1895-0648</orcidid><orcidid>https://orcid.org/0000-0002-9675-678X</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000-0002-1930-0439</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0002-8244-2448</orcidid><orcidid>https://orcid.org/0000-0002-0017-8605</orcidid><orcidid>https://orcid.org/0000-0003-1346-0914</orcidid><orcidid>https://orcid.org/0000-0001-7768-5931</orcidid><orcidid>https://orcid.org/0000-0003-2641-4597</orcidid><orcidid>https://orcid.org/0000-0003-3049-8658</orcidid><orcidid>https://orcid.org/0000-0002-2754-9816</orcidid><orcidid>https://orcid.org/0000-0002-6020-7113</orcidid><orcidid>https://orcid.org/0000-0003-3754-897X</orcidid><orcidid>https://orcid.org/0009-0005-5063-7047</orcidid><orcidid>https://orcid.org/0000-0002-6930-4702</orcidid><orcidid>https://orcid.org/0000-0002-0002-5342</orcidid><orcidid>https://orcid.org/0000-0001-5105-8139</orcidid><orcidid>https://orcid.org/0000-0002-9146-1544</orcidid><orcidid>https://orcid.org/0000-0002-7911-2739</orcidid><orcidid>https://orcid.org/0000-0003-3384-5280</orcidid><orcidid>https://orcid.org/0000-0002-8573-2539</orcidid><orcidid>https://orcid.org/0000-0003-1004-5782</orcidid><orcidid>https://orcid.org/0000-0001-8422-8464</orcidid><orcidid>https://orcid.org/0000-0002-7109-2278</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0001-5635-7330</orcidid><orcidid>https://orcid.org/0000-0003-2924-3674</orcidid><orcidid>https://orcid.org/0000000319202799</orcidid><orcidid>https://orcid.org/0000000310045782</orcidid><orcidid>https://orcid.org/0000000347508015</orcidid><orcidid>https://orcid.org/0000000296121936</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><orcidid>https://orcid.org/0000000313460914</orcidid><orcidid>https://orcid.org/0000000330498658</orcidid><orcidid>https://orcid.org/0000000329243674</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/0000000326414597</orcidid><orcidid>https://orcid.org/0000000212512922</orcidid><orcidid>https://orcid.org/0000000161272825</orcidid><orcidid>https://orcid.org/000000033754897X</orcidid><orcidid>https://orcid.org/0000000318950648</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000200996675</orcidid><orcidid>https://orcid.org/0000000200025342</orcidid><orcidid>https://orcid.org/0000000260207113</orcidid><orcidid>https://orcid.org/0000000291461544</orcidid><orcidid>https://orcid.org/0000000280104971</orcidid><orcidid>https://orcid.org/0000000156357330</orcidid><orcidid>https://orcid.org/0000000151058139</orcidid><orcidid>https://orcid.org/0000000282442448</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000177685931</orcidid><orcidid>https://orcid.org/0000000271092278</orcidid><orcidid>https://orcid.org/0000000269304702</orcidid><orcidid>https://orcid.org/0000000279112739</orcidid><orcidid>https://orcid.org/0000000184228464</orcidid></search><sort><creationdate>20241001</creationdate><title>Overview of results from the 2023 DIII-D negative triangularity campaign</title><author>Thome, K E ; Austin, M E ; Hyatt, A ; Marinoni, A ; Nelson, A O ; Paz-Soldan, C ; Scotti, F ; Boyes, W ; Casali, L ; Chrystal, C ; Ding, S ; Du, X D ; Eldon, D ; Ernst, D ; Hong, R ; McKee, G R ; Mordijck, S ; Sauter, O ; Schmitz, L ; Barr, J L ; Burke, M G ; Coda, S ; Cote, T B ; Fenstermacher, M E ; Garofalo, A ; Khabanov, F O ; Kramer, G J ; Lasnier, C J ; Logan, N C ; Lunia, P ; McLean, A G ; Okabayashi, M ; Shiraki, D ; Stewart, S ; Takemura, Y ; Truong, D D ; Osborne, T ; Van Zeeland, M A ; Victor, B S ; Wang, H Q ; Watkins, J G ; Wehner, W P ; Welander, A S ; Wilks, T M ; Yang, J ; Yu, G ; Zeng, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-692772c9c826c194c791033293d752d25c6607429bcdaf2f91681340c846f5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>confinement</topic><topic>negative triangularity</topic><topic>NT edge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thome, K E</creatorcontrib><creatorcontrib>Austin, M E</creatorcontrib><creatorcontrib>Hyatt, A</creatorcontrib><creatorcontrib>Marinoni, A</creatorcontrib><creatorcontrib>Nelson, A O</creatorcontrib><creatorcontrib>Paz-Soldan, C</creatorcontrib><creatorcontrib>Scotti, F</creatorcontrib><creatorcontrib>Boyes, W</creatorcontrib><creatorcontrib>Casali, L</creatorcontrib><creatorcontrib>Chrystal, C</creatorcontrib><creatorcontrib>Ding, S</creatorcontrib><creatorcontrib>Du, X D</creatorcontrib><creatorcontrib>Eldon, D</creatorcontrib><creatorcontrib>Ernst, D</creatorcontrib><creatorcontrib>Hong, R</creatorcontrib><creatorcontrib>McKee, G R</creatorcontrib><creatorcontrib>Mordijck, S</creatorcontrib><creatorcontrib>Sauter, O</creatorcontrib><creatorcontrib>Schmitz, L</creatorcontrib><creatorcontrib>Barr, J L</creatorcontrib><creatorcontrib>Burke, M G</creatorcontrib><creatorcontrib>Coda, S</creatorcontrib><creatorcontrib>Cote, T B</creatorcontrib><creatorcontrib>Fenstermacher, M E</creatorcontrib><creatorcontrib>Garofalo, A</creatorcontrib><creatorcontrib>Khabanov, F O</creatorcontrib><creatorcontrib>Kramer, G J</creatorcontrib><creatorcontrib>Lasnier, C J</creatorcontrib><creatorcontrib>Logan, N C</creatorcontrib><creatorcontrib>Lunia, P</creatorcontrib><creatorcontrib>McLean, A G</creatorcontrib><creatorcontrib>Okabayashi, M</creatorcontrib><creatorcontrib>Shiraki, D</creatorcontrib><creatorcontrib>Stewart, S</creatorcontrib><creatorcontrib>Takemura, Y</creatorcontrib><creatorcontrib>Truong, D D</creatorcontrib><creatorcontrib>Osborne, T</creatorcontrib><creatorcontrib>Van Zeeland, M A</creatorcontrib><creatorcontrib>Victor, B S</creatorcontrib><creatorcontrib>Wang, H Q</creatorcontrib><creatorcontrib>Watkins, J G</creatorcontrib><creatorcontrib>Wehner, W P</creatorcontrib><creatorcontrib>Welander, A S</creatorcontrib><creatorcontrib>Wilks, T M</creatorcontrib><creatorcontrib>Yang, J</creatorcontrib><creatorcontrib>Yu, G</creatorcontrib><creatorcontrib>Zeng, L</creatorcontrib><creatorcontrib>the DIII-D Team</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Plasma physics and controlled fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thome, K E</au><au>Austin, M E</au><au>Hyatt, A</au><au>Marinoni, A</au><au>Nelson, A O</au><au>Paz-Soldan, C</au><au>Scotti, F</au><au>Boyes, W</au><au>Casali, L</au><au>Chrystal, C</au><au>Ding, S</au><au>Du, X D</au><au>Eldon, D</au><au>Ernst, D</au><au>Hong, R</au><au>McKee, G R</au><au>Mordijck, S</au><au>Sauter, O</au><au>Schmitz, L</au><au>Barr, J L</au><au>Burke, M G</au><au>Coda, S</au><au>Cote, T B</au><au>Fenstermacher, M E</au><au>Garofalo, A</au><au>Khabanov, F O</au><au>Kramer, G J</au><au>Lasnier, C J</au><au>Logan, N C</au><au>Lunia, P</au><au>McLean, A G</au><au>Okabayashi, M</au><au>Shiraki, D</au><au>Stewart, S</au><au>Takemura, Y</au><au>Truong, D D</au><au>Osborne, T</au><au>Van Zeeland, M A</au><au>Victor, B S</au><au>Wang, H Q</au><au>Watkins, J G</au><au>Wehner, W P</au><au>Welander, A S</au><au>Wilks, T M</au><au>Yang, J</au><au>Yu, G</au><au>Zeng, L</au><aucorp>the DIII-D Team</aucorp><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of results from the 2023 DIII-D negative triangularity campaign</atitle><jtitle>Plasma physics and controlled fusion</jtitle><stitle>PPCF</stitle><addtitle>Plasma Phys. Control. Fusion</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>66</volume><issue>10</issue><spage>105018</spage><pages>105018-</pages><issn>0741-3335</issn><eissn>1361-6587</eissn><coden>PLPHBZ</coden><abstract>Negative triangularity (NT) is a potentially transformative configuration for tokamak-based fusion energy with its high-performance core, edge localized mode (ELM)-free edge, and low-field-side divertors that could readily scale to an integrated reactor solution. Previous NT work on the TCV and DIII-D tokamaks motivated the installation of graphite-tile armor on the low-field-side lower outer wall of DIII-D. A dedicated multiple-week experimental campaign was conducted to qualify the NT scenario for future reactors. During the DIII-D NT campaign, high confinement ( H 98 y , 2 ≳ 1), high current ( q 95 &lt; 3), and high normalized pressure plasmas ( β N &gt; 2.5) were simultaneously attained in strongly NT-shaped discharges with average triangularity δ avg = −0.5 that were stably controlled. Experiments covered a wide range of DIII-D operational space (plasma current, toroidal field, electron density and pressure) and did not trigger an ELM in a single discharge as long as sufficiently strong NT was maintained; in contrast, to other high-performance ELM-suppression scenarios that have narrower operating windows. These strong NT plasmas had a lower outer divertor X-point shape and maintained a non-ELMing edge with an electron temperature pedestal, exceeding that of typical L-mode plasmas. Also, the following was achieved during the campaign: high normalized density ( n e / n GW of at least 1.7), particle confinement comparable to energy confinement with Z eff ∼ 2 , a detached divertor without impurity seeding, and a mantle radiation scenario using extrinsic impurities. These results are promising for a NT fusion pilot plant but further questions on confinement extrapolation and core-edge integration remain, which motivate future NT studies on DIII-D and beyond.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6587/ad6f40</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9612-1936</orcidid><orcidid>https://orcid.org/0000-0002-1251-2922</orcidid><orcidid>https://orcid.org/0000-0001-8537-4383</orcidid><orcidid>https://orcid.org/0000-0001-6127-2825</orcidid><orcidid>https://orcid.org/0000-0002-9577-2809</orcidid><orcidid>https://orcid.org/0000-0003-1920-2799</orcidid><orcidid>https://orcid.org/0000-0002-0196-9919</orcidid><orcidid>https://orcid.org/0000-0001-7619-3724</orcidid><orcidid>https://orcid.org/0000-0002-1452-6949</orcidid><orcidid>https://orcid.org/0000-0002-0697-4397</orcidid><orcidid>https://orcid.org/0000-0003-4750-8015</orcidid><orcidid>https://orcid.org/0000-0002-8010-4971</orcidid><orcidid>https://orcid.org/0000-0002-0099-6675</orcidid><orcidid>https://orcid.org/0000-0003-1895-0648</orcidid><orcidid>https://orcid.org/0000-0002-9675-678X</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000-0002-1930-0439</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0002-8244-2448</orcidid><orcidid>https://orcid.org/0000-0002-0017-8605</orcidid><orcidid>https://orcid.org/0000-0003-1346-0914</orcidid><orcidid>https://orcid.org/0000-0001-7768-5931</orcidid><orcidid>https://orcid.org/0000-0003-2641-4597</orcidid><orcidid>https://orcid.org/0000-0003-3049-8658</orcidid><orcidid>https://orcid.org/0000-0002-2754-9816</orcidid><orcidid>https://orcid.org/0000-0002-6020-7113</orcidid><orcidid>https://orcid.org/0000-0003-3754-897X</orcidid><orcidid>https://orcid.org/0009-0005-5063-7047</orcidid><orcidid>https://orcid.org/0000-0002-6930-4702</orcidid><orcidid>https://orcid.org/0000-0002-0002-5342</orcidid><orcidid>https://orcid.org/0000-0001-5105-8139</orcidid><orcidid>https://orcid.org/0000-0002-9146-1544</orcidid><orcidid>https://orcid.org/0000-0002-7911-2739</orcidid><orcidid>https://orcid.org/0000-0003-3384-5280</orcidid><orcidid>https://orcid.org/0000-0002-8573-2539</orcidid><orcidid>https://orcid.org/0000-0003-1004-5782</orcidid><orcidid>https://orcid.org/0000-0001-8422-8464</orcidid><orcidid>https://orcid.org/0000-0002-7109-2278</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0001-5635-7330</orcidid><orcidid>https://orcid.org/0000-0003-2924-3674</orcidid><orcidid>https://orcid.org/0000000319202799</orcidid><orcidid>https://orcid.org/0000000310045782</orcidid><orcidid>https://orcid.org/0000000347508015</orcidid><orcidid>https://orcid.org/0000000296121936</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><orcidid>https://orcid.org/0000000313460914</orcidid><orcidid>https://orcid.org/0000000330498658</orcidid><orcidid>https://orcid.org/0000000329243674</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/0000000326414597</orcidid><orcidid>https://orcid.org/0000000212512922</orcidid><orcidid>https://orcid.org/0000000161272825</orcidid><orcidid>https://orcid.org/000000033754897X</orcidid><orcidid>https://orcid.org/0000000318950648</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000200996675</orcidid><orcidid>https://orcid.org/0000000200025342</orcidid><orcidid>https://orcid.org/0000000260207113</orcidid><orcidid>https://orcid.org/0000000291461544</orcidid><orcidid>https://orcid.org/0000000280104971</orcidid><orcidid>https://orcid.org/0000000156357330</orcidid><orcidid>https://orcid.org/0000000151058139</orcidid><orcidid>https://orcid.org/0000000282442448</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000177685931</orcidid><orcidid>https://orcid.org/0000000271092278</orcidid><orcidid>https://orcid.org/0000000269304702</orcidid><orcidid>https://orcid.org/0000000279112739</orcidid><orcidid>https://orcid.org/0000000184228464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-3335
ispartof Plasma physics and controlled fusion, 2024-10, Vol.66 (10), p.105018
issn 0741-3335
1361-6587
language eng
recordid cdi_iop_journals_10_1088_1361_6587_ad6f40
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects confinement
negative triangularity
NT edge
title Overview of results from the 2023 DIII-D negative triangularity campaign
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20results%20from%20the%202023%20DIII-D%20negative%20triangularity%20campaign&rft.jtitle=Plasma%20physics%20and%20controlled%20fusion&rft.au=Thome,%20K%20E&rft.aucorp=the%20DIII-D%20Team&rft.date=2024-10-01&rft.volume=66&rft.issue=10&rft.spage=105018&rft.pages=105018-&rft.issn=0741-3335&rft.eissn=1361-6587&rft.coden=PLPHBZ&rft_id=info:doi/10.1088/1361-6587/ad6f40&rft_dat=%3Ciop_osti_%3Eppcfad6f40%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true