Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets

This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme magnetized plasma regime realizable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics and controlled fusion 2022-02, Vol.64 (2), p.25007
Hauptverfasser: Walsh, C A, Florido, R, Bailly-Grandvaux, M, Suzuki-Vidal, F, Chittenden, J P, Crilly, A J, Gigosos, M A, Mancini, R C, Pérez-Callejo, G, Vlachos, C, McGuffey, C, Beg, F N, Santos, J J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25007
container_title Plasma physics and controlled fusion
container_volume 64
creator Walsh, C A
Florido, R
Bailly-Grandvaux, M
Suzuki-Vidal, F
Chittenden, J P
Crilly, A J
Gigosos, M A
Mancini, R C
Pérez-Callejo, G
Vlachos, C
McGuffey, C
Beg, F N
Santos, J J
description This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme magnetized plasma regime realizable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experiments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In particular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core electron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implosions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally driven or current-driven transport is dominating.
doi_str_mv 10.1088/1361-6587/ac3f25
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6587_ac3f25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ppcfac3f25</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e4cb5a09ee7eb9c563cd0b28489aefe5e6407b0f6b5f2001bee34ec1a5fb9d5e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePQbP1k2apB9HWdYPELzoxUtI08luljYpSZRdf70tFW-eBl7eZ5h5ELqm5I6SqlpRVtCsEFW5UpqZXJygxV90ihak5DRjjIlzdBHjnhBKq7xYoI_NYeh8sG6L4ZAC9IB7tXWQ7LdK1js87MD5HpzC1uHWBtCpO-I22C9w2PYj3E6wPnbWjalWHU4qbCHFS3RmVBfh6ncu0fvD5m39lL28Pj6v718yzXidMuC6EYrUACU0tRYF0y1p8opXtQIDAgpOyoaYohEmH-9uABgHTZUwTd0KYEt0M-_1MVkZtU2gd9o7N54qacVqXpCxROaSDj7GAEYOwfYqHCUlchIoJ1tysiVngSNyOyPWD3LvP4Mbv_i__gNoRnTY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Walsh, C A ; Florido, R ; Bailly-Grandvaux, M ; Suzuki-Vidal, F ; Chittenden, J P ; Crilly, A J ; Gigosos, M A ; Mancini, R C ; Pérez-Callejo, G ; Vlachos, C ; McGuffey, C ; Beg, F N ; Santos, J J</creator><creatorcontrib>Walsh, C A ; Florido, R ; Bailly-Grandvaux, M ; Suzuki-Vidal, F ; Chittenden, J P ; Crilly, A J ; Gigosos, M A ; Mancini, R C ; Pérez-Callejo, G ; Vlachos, C ; McGuffey, C ; Beg, F N ; Santos, J J</creatorcontrib><description>This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme magnetized plasma regime realizable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experiments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In particular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core electron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implosions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally driven or current-driven transport is dominating.</description><identifier>ISSN: 0741-3335</identifier><identifier>EISSN: 1361-6587</identifier><identifier>DOI: 10.1088/1361-6587/ac3f25</identifier><identifier>CODEN: PLPHBZ</identifier><language>eng</language><publisher>United Kingdom: IOP Publishing</publisher><subject>extended-MHD ; ICF ; magnetic fields ; magnetized HEDP ; magnetized plasmas ; magneto-inertial fusion ; magnetohydrodynamics</subject><ispartof>Plasma physics and controlled fusion, 2022-02, Vol.64 (2), p.25007</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e4cb5a09ee7eb9c563cd0b28489aefe5e6407b0f6b5f2001bee34ec1a5fb9d5e3</citedby><cites>FETCH-LOGICAL-c349t-e4cb5a09ee7eb9c563cd0b28489aefe5e6407b0f6b5f2001bee34ec1a5fb9d5e3</cites><orcidid>0000-0001-7529-4013 ; 0000-0002-4737-8559 ; 0000-0002-6639-3543 ; 0000-0003-4834-1536 ; 0000-0003-0391-8944 ; 0000-0003-3719-2352 ; 0000-0001-7428-6273 ; 0000000266393543 ; 0000000174286273 ; 0000000247378559 ; 0000000337192352 ; 0000000175294013 ; 0000000348341536 ; 0000000303918944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6587/ac3f25/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1839460$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, C A</creatorcontrib><creatorcontrib>Florido, R</creatorcontrib><creatorcontrib>Bailly-Grandvaux, M</creatorcontrib><creatorcontrib>Suzuki-Vidal, F</creatorcontrib><creatorcontrib>Chittenden, J P</creatorcontrib><creatorcontrib>Crilly, A J</creatorcontrib><creatorcontrib>Gigosos, M A</creatorcontrib><creatorcontrib>Mancini, R C</creatorcontrib><creatorcontrib>Pérez-Callejo, G</creatorcontrib><creatorcontrib>Vlachos, C</creatorcontrib><creatorcontrib>McGuffey, C</creatorcontrib><creatorcontrib>Beg, F N</creatorcontrib><creatorcontrib>Santos, J J</creatorcontrib><title>Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets</title><title>Plasma physics and controlled fusion</title><addtitle>PPCF</addtitle><addtitle>Plasma Phys. Control. Fusion</addtitle><description>This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme magnetized plasma regime realizable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experiments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In particular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core electron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implosions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally driven or current-driven transport is dominating.</description><subject>extended-MHD</subject><subject>ICF</subject><subject>magnetic fields</subject><subject>magnetized HEDP</subject><subject>magnetized plasmas</subject><subject>magneto-inertial fusion</subject><subject>magnetohydrodynamics</subject><issn>0741-3335</issn><issn>1361-6587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1LxDAQhoMouK7ePQbP1k2apB9HWdYPELzoxUtI08luljYpSZRdf70tFW-eBl7eZ5h5ELqm5I6SqlpRVtCsEFW5UpqZXJygxV90ihak5DRjjIlzdBHjnhBKq7xYoI_NYeh8sG6L4ZAC9IB7tXWQ7LdK1js87MD5HpzC1uHWBtCpO-I22C9w2PYj3E6wPnbWjalWHU4qbCHFS3RmVBfh6ncu0fvD5m39lL28Pj6v718yzXidMuC6EYrUACU0tRYF0y1p8opXtQIDAgpOyoaYohEmH-9uABgHTZUwTd0KYEt0M-_1MVkZtU2gd9o7N54qacVqXpCxROaSDj7GAEYOwfYqHCUlchIoJ1tysiVngSNyOyPWD3LvP4Mbv_i__gNoRnTY</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Walsh, C A</creator><creator>Florido, R</creator><creator>Bailly-Grandvaux, M</creator><creator>Suzuki-Vidal, F</creator><creator>Chittenden, J P</creator><creator>Crilly, A J</creator><creator>Gigosos, M A</creator><creator>Mancini, R C</creator><creator>Pérez-Callejo, G</creator><creator>Vlachos, C</creator><creator>McGuffey, C</creator><creator>Beg, F N</creator><creator>Santos, J J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7529-4013</orcidid><orcidid>https://orcid.org/0000-0002-4737-8559</orcidid><orcidid>https://orcid.org/0000-0002-6639-3543</orcidid><orcidid>https://orcid.org/0000-0003-4834-1536</orcidid><orcidid>https://orcid.org/0000-0003-0391-8944</orcidid><orcidid>https://orcid.org/0000-0003-3719-2352</orcidid><orcidid>https://orcid.org/0000-0001-7428-6273</orcidid><orcidid>https://orcid.org/0000000266393543</orcidid><orcidid>https://orcid.org/0000000174286273</orcidid><orcidid>https://orcid.org/0000000247378559</orcidid><orcidid>https://orcid.org/0000000337192352</orcidid><orcidid>https://orcid.org/0000000175294013</orcidid><orcidid>https://orcid.org/0000000348341536</orcidid><orcidid>https://orcid.org/0000000303918944</orcidid></search><sort><creationdate>20220201</creationdate><title>Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets</title><author>Walsh, C A ; Florido, R ; Bailly-Grandvaux, M ; Suzuki-Vidal, F ; Chittenden, J P ; Crilly, A J ; Gigosos, M A ; Mancini, R C ; Pérez-Callejo, G ; Vlachos, C ; McGuffey, C ; Beg, F N ; Santos, J J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e4cb5a09ee7eb9c563cd0b28489aefe5e6407b0f6b5f2001bee34ec1a5fb9d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>extended-MHD</topic><topic>ICF</topic><topic>magnetic fields</topic><topic>magnetized HEDP</topic><topic>magnetized plasmas</topic><topic>magneto-inertial fusion</topic><topic>magnetohydrodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, C A</creatorcontrib><creatorcontrib>Florido, R</creatorcontrib><creatorcontrib>Bailly-Grandvaux, M</creatorcontrib><creatorcontrib>Suzuki-Vidal, F</creatorcontrib><creatorcontrib>Chittenden, J P</creatorcontrib><creatorcontrib>Crilly, A J</creatorcontrib><creatorcontrib>Gigosos, M A</creatorcontrib><creatorcontrib>Mancini, R C</creatorcontrib><creatorcontrib>Pérez-Callejo, G</creatorcontrib><creatorcontrib>Vlachos, C</creatorcontrib><creatorcontrib>McGuffey, C</creatorcontrib><creatorcontrib>Beg, F N</creatorcontrib><creatorcontrib>Santos, J J</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Plasma physics and controlled fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, C A</au><au>Florido, R</au><au>Bailly-Grandvaux, M</au><au>Suzuki-Vidal, F</au><au>Chittenden, J P</au><au>Crilly, A J</au><au>Gigosos, M A</au><au>Mancini, R C</au><au>Pérez-Callejo, G</au><au>Vlachos, C</au><au>McGuffey, C</au><au>Beg, F N</au><au>Santos, J J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets</atitle><jtitle>Plasma physics and controlled fusion</jtitle><stitle>PPCF</stitle><addtitle>Plasma Phys. Control. Fusion</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>64</volume><issue>2</issue><spage>25007</spage><pages>25007-</pages><issn>0741-3335</issn><eissn>1361-6587</eissn><coden>PLPHBZ</coden><abstract>This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme magnetized plasma regime realizable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experiments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In particular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core electron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implosions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally driven or current-driven transport is dominating.</abstract><cop>United Kingdom</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6587/ac3f25</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7529-4013</orcidid><orcidid>https://orcid.org/0000-0002-4737-8559</orcidid><orcidid>https://orcid.org/0000-0002-6639-3543</orcidid><orcidid>https://orcid.org/0000-0003-4834-1536</orcidid><orcidid>https://orcid.org/0000-0003-0391-8944</orcidid><orcidid>https://orcid.org/0000-0003-3719-2352</orcidid><orcidid>https://orcid.org/0000-0001-7428-6273</orcidid><orcidid>https://orcid.org/0000000266393543</orcidid><orcidid>https://orcid.org/0000000174286273</orcidid><orcidid>https://orcid.org/0000000247378559</orcidid><orcidid>https://orcid.org/0000000337192352</orcidid><orcidid>https://orcid.org/0000000175294013</orcidid><orcidid>https://orcid.org/0000000348341536</orcidid><orcidid>https://orcid.org/0000000303918944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-3335
ispartof Plasma physics and controlled fusion, 2022-02, Vol.64 (2), p.25007
issn 0741-3335
1361-6587
language eng
recordid cdi_iop_journals_10_1088_1361_6587_ac3f25
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects extended-MHD
ICF
magnetic fields
magnetized HEDP
magnetized plasmas
magneto-inertial fusion
magnetohydrodynamics
title Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20extreme%20magnetization%20phenomena%20in%20directly%20driven%20imploding%20cylindrical%20targets&rft.jtitle=Plasma%20physics%20and%20controlled%20fusion&rft.au=Walsh,%20C%20A&rft.date=2022-02-01&rft.volume=64&rft.issue=2&rft.spage=25007&rft.pages=25007-&rft.issn=0741-3335&rft.eissn=1361-6587&rft.coden=PLPHBZ&rft_id=info:doi/10.1088/1361-6587/ac3f25&rft_dat=%3Ciop_cross%3Eppcfac3f25%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true