Electron acceleration using twisted laser wavefronts

Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics and controlled fusion 2021-12, Vol.63 (12), p.125032
Hauptverfasser: Shi, Yin, R Blackman, David, Arefiev, Alexey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 125032
container_title Plasma physics and controlled fusion
container_volume 63
creator Shi, Yin
R Blackman, David
Arefiev, Alexey
description Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world.
doi_str_mv 10.1088/1361-6587/ac318d
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6587_ac318d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ppcfac318d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1f151975b21433b80dc597d96a82697464e4f0b04734f1f5cda7d439b6db928d3</originalsourceid><addsrcrecordid>eNp1j0tLw0AQxxdRMFbvHvMBjN3Jvo9S6gMKXvS87FNSYlJ2txa_vQkRb56GGf6P-SF0C_gesJRrIBwazqRYG0dA-jNU_Z3OUYUFhYYQwi7RVc57jAFkyytEt31wJY1DbZwLfUimdNNyzN3wUZdTl0vwdW9ySPXJfIU4KUu-RhfR9Dnc_M4Ven_cvm2em93r08vmYde4VuLSQAQGSjDbAiXESuwdU8IrbqZqJSingUZsMRWERojMeSM8Jcpyb1UrPVkhvOS6NOacQtSH1H2a9K0B65laz4h6RtQL9WS5WyzdeND78ZiG6cH_5T8rl1hG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron acceleration using twisted laser wavefronts</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shi, Yin ; R Blackman, David ; Arefiev, Alexey</creator><creatorcontrib>Shi, Yin ; R Blackman, David ; Arefiev, Alexey</creatorcontrib><description>Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world.</description><identifier>ISSN: 0741-3335</identifier><identifier>EISSN: 1361-6587</identifier><identifier>DOI: 10.1088/1361-6587/ac318d</identifier><identifier>CODEN: PLPHBZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>high intensity laser-plasma interactions ; laser driven electron acceleration ; particle-in-cell simulation ; twisted laser</subject><ispartof>Plasma physics and controlled fusion, 2021-12, Vol.63 (12), p.125032</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1f151975b21433b80dc597d96a82697464e4f0b04734f1f5cda7d439b6db928d3</citedby><cites>FETCH-LOGICAL-c280t-1f151975b21433b80dc597d96a82697464e4f0b04734f1f5cda7d439b6db928d3</cites><orcidid>0000-0001-9902-873X ; 0000-0002-0597-0976 ; 0000-0001-7852-4216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6587/ac318d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>R Blackman, David</creatorcontrib><creatorcontrib>Arefiev, Alexey</creatorcontrib><title>Electron acceleration using twisted laser wavefronts</title><title>Plasma physics and controlled fusion</title><addtitle>PPCF</addtitle><addtitle>Plasma Phys. Control. Fusion</addtitle><description>Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world.</description><subject>high intensity laser-plasma interactions</subject><subject>laser driven electron acceleration</subject><subject>particle-in-cell simulation</subject><subject>twisted laser</subject><issn>0741-3335</issn><issn>1361-6587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLw0AQxxdRMFbvHvMBjN3Jvo9S6gMKXvS87FNSYlJ2txa_vQkRb56GGf6P-SF0C_gesJRrIBwazqRYG0dA-jNU_Z3OUYUFhYYQwi7RVc57jAFkyytEt31wJY1DbZwLfUimdNNyzN3wUZdTl0vwdW9ySPXJfIU4KUu-RhfR9Dnc_M4Ven_cvm2em93r08vmYde4VuLSQAQGSjDbAiXESuwdU8IrbqZqJSingUZsMRWERojMeSM8Jcpyb1UrPVkhvOS6NOacQtSH1H2a9K0B65laz4h6RtQL9WS5WyzdeND78ZiG6cH_5T8rl1hG</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shi, Yin</creator><creator>R Blackman, David</creator><creator>Arefiev, Alexey</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9902-873X</orcidid><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0001-7852-4216</orcidid></search><sort><creationdate>20211201</creationdate><title>Electron acceleration using twisted laser wavefronts</title><author>Shi, Yin ; R Blackman, David ; Arefiev, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1f151975b21433b80dc597d96a82697464e4f0b04734f1f5cda7d439b6db928d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>high intensity laser-plasma interactions</topic><topic>laser driven electron acceleration</topic><topic>particle-in-cell simulation</topic><topic>twisted laser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>R Blackman, David</creatorcontrib><creatorcontrib>Arefiev, Alexey</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics and controlled fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yin</au><au>R Blackman, David</au><au>Arefiev, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron acceleration using twisted laser wavefronts</atitle><jtitle>Plasma physics and controlled fusion</jtitle><stitle>PPCF</stitle><addtitle>Plasma Phys. Control. Fusion</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>63</volume><issue>12</issue><spage>125032</spage><pages>125032-</pages><issn>0741-3335</issn><eissn>1361-6587</eissn><coden>PLPHBZ</coden><abstract>Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6587/ac318d</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9902-873X</orcidid><orcidid>https://orcid.org/0000-0002-0597-0976</orcidid><orcidid>https://orcid.org/0000-0001-7852-4216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3335
ispartof Plasma physics and controlled fusion, 2021-12, Vol.63 (12), p.125032
issn 0741-3335
1361-6587
language eng
recordid cdi_iop_journals_10_1088_1361_6587_ac318d
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects high intensity laser-plasma interactions
laser driven electron acceleration
particle-in-cell simulation
twisted laser
title Electron acceleration using twisted laser wavefronts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20acceleration%20using%20twisted%20laser%20wavefronts&rft.jtitle=Plasma%20physics%20and%20controlled%20fusion&rft.au=Shi,%20Yin&rft.date=2021-12-01&rft.volume=63&rft.issue=12&rft.spage=125032&rft.pages=125032-&rft.issn=0741-3335&rft.eissn=1361-6587&rft.coden=PLPHBZ&rft_id=info:doi/10.1088/1361-6587/ac318d&rft_dat=%3Ciop_cross%3Eppcfac318d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true