Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models

Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk. Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-10, Vol.69 (21), p.215011
Hauptverfasser: Viar-Hernandez, David, Manuel Molina-Maza, Juan, Pan, Shaoyan, Salari, Elahheh, Chang, Chih-Wei, Eidex, Zach, Zhou, Jun, Antonio Vera-Sanchez, Juan, Rodriguez-Vila, Borja, Malpica, Norberto, Torrado-Carvajal, Angel, Yang, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 215011
container_title Physics in medicine & biology
container_volume 69
creator Viar-Hernandez, David
Manuel Molina-Maza, Juan
Pan, Shaoyan
Salari, Elahheh
Chang, Chih-Wei
Eidex, Zach
Zhou, Jun
Antonio Vera-Sanchez, Juan
Rodriguez-Vila, Borja
Malpica, Norberto
Torrado-Carvajal, Angel
Yang, Xiaofeng
description Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk. Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the resolution and detail necessary for accurate dosimetry, especially in proton therapy. This study aims to enhance ART by introducing an innovative approach that synthesizes dual-energy computed tomography (DECT) images from CBCT scans using a novel 3D conditional denoising diffusion probabilistic model (DDPM) multi-decoder. This method seeks to improve dose calculations in ART planning, enhancing tissue characterization. We utilized a paired CBCT-DECT dataset from 54 head and neck cancer patients to train and validate our DDPM model. The model employs a multi-decoder Swin-UNET architecture that synthesizes high-resolution DECT images by progressively reducing noise and artifacts in CBCT scans through a controlled diffusion process. The proposed method demonstrated superior performance in synthesizing DECT images (High DECT MAE 39.582 ± 0.855 and Low DECT MAE 48.540± 1.833) with significantly enhanced signal-to-noise ratio and reduced artifacts compared to traditional GAN-based methods. It showed marked improvements in tissue characterization and anatomical structure similarity, critical for precise proton and radiation therapy planning. This research has opened a new avenue in CBCT-CT synthesis for ART/APT by generating DECT images using an enhanced DDPM approach. The demonstrated similarity between the synthesized DECT images and ground truth images suggests that these synthetic volumes can be used for accurate dose calculations, leading to better adaptation in treatment planning.
doi_str_mv 10.1088/1361-6560/ad8547
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6560_ad8547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115095052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-5295cc3e79e1bc47ef0795e38810da72b6c08dbb89a2e470b77bf20f842fb6453</originalsourceid><addsrcrecordid>eNp1kb1u2zAUhYkiReMm3TMFHDNUNSmJEtWtEZI2gIEuzkzw59JlIJMKKQXxa_SJS9eOt0wEDr5zLu-5CF1R8o0Szpe0amjRsIYspeGsbj-gxUk6QwtCKlp0lLFz9DmlJ0Io5WX9CZ1XXcUrzpsF-nv3Og4hOr_BZpYDBg9xs8P9Gqedn_5Acgk7j_vbfl0omcBgaeQ4uRfAURoXMhLluMPSGzzGMAWPj9J3LMdxcFpOLovBYgM-uPR_krN2Tns5W5RUbnBpchpvg4EhXaKPVg4JvhzfC_R4f7fufxWr3z8f-h-rQpe0mwpWdkzrCtoOqNJ1C5a0HYO8FiVGtqVqNOFGKd7JEuqWqLZVtiSW16VVTc2qC3RzyM2feJ4hTWLrkoZhkB7CnERFKSMdI6zMKDmgOoaUIlgxRreVcScoEftLiH3tYl-7OFwiW66P6bPagjkZ3qrPwNcD4MIonsIcfV72_bx_KiCUqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115095052</pqid></control><display><type>article</type><title>Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Viar-Hernandez, David ; Manuel Molina-Maza, Juan ; Pan, Shaoyan ; Salari, Elahheh ; Chang, Chih-Wei ; Eidex, Zach ; Zhou, Jun ; Antonio Vera-Sanchez, Juan ; Rodriguez-Vila, Borja ; Malpica, Norberto ; Torrado-Carvajal, Angel ; Yang, Xiaofeng</creator><creatorcontrib>Viar-Hernandez, David ; Manuel Molina-Maza, Juan ; Pan, Shaoyan ; Salari, Elahheh ; Chang, Chih-Wei ; Eidex, Zach ; Zhou, Jun ; Antonio Vera-Sanchez, Juan ; Rodriguez-Vila, Borja ; Malpica, Norberto ; Torrado-Carvajal, Angel ; Yang, Xiaofeng</creatorcontrib><description>Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk. Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the resolution and detail necessary for accurate dosimetry, especially in proton therapy. This study aims to enhance ART by introducing an innovative approach that synthesizes dual-energy computed tomography (DECT) images from CBCT scans using a novel 3D conditional denoising diffusion probabilistic model (DDPM) multi-decoder. This method seeks to improve dose calculations in ART planning, enhancing tissue characterization. We utilized a paired CBCT-DECT dataset from 54 head and neck cancer patients to train and validate our DDPM model. The model employs a multi-decoder Swin-UNET architecture that synthesizes high-resolution DECT images by progressively reducing noise and artifacts in CBCT scans through a controlled diffusion process. The proposed method demonstrated superior performance in synthesizing DECT images (High DECT MAE 39.582 ± 0.855 and Low DECT MAE 48.540± 1.833) with significantly enhanced signal-to-noise ratio and reduced artifacts compared to traditional GAN-based methods. It showed marked improvements in tissue characterization and anatomical structure similarity, critical for precise proton and radiation therapy planning. This research has opened a new avenue in CBCT-CT synthesis for ART/APT by generating DECT images using an enhanced DDPM approach. The demonstrated similarity between the synthesized DECT images and ground truth images suggests that these synthetic volumes can be used for accurate dose calculations, leading to better adaptation in treatment planning.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad8547</identifier><identifier>PMID: 39383886</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>adaptive proton therapy ; Cone-Beam Computed Tomography - methods ; DECT synthesis ; Diffusion ; diffusion model ; Head and Neck Neoplasms - diagnostic imaging ; Head and Neck Neoplasms - radiotherapy ; Humans ; Image Processing, Computer-Assisted - methods ; Models, Statistical ; Proton Therapy - methods ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Image-Guided - methods ; Signal-To-Noise Ratio</subject><ispartof>Physics in medicine &amp; biology, 2024-10, Vol.69 (21), p.215011</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-5295cc3e79e1bc47ef0795e38810da72b6c08dbb89a2e470b77bf20f842fb6453</cites><orcidid>0000-0003-4618-7459 ; 0000-0001-9023-5855 ; 0000-0002-1938-2980 ; 0000-0002-3818-4381 ; 0009-0007-1040-0189 ; 0000-0002-1540-2809 ; 0000-0002-6078-9424 ; 0009-0007-7137-2572 ; 0000-0002-3594-9457 ; 0000-0002-0848-8157 ; 0000-0003-4779-0225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad8547/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39383886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viar-Hernandez, David</creatorcontrib><creatorcontrib>Manuel Molina-Maza, Juan</creatorcontrib><creatorcontrib>Pan, Shaoyan</creatorcontrib><creatorcontrib>Salari, Elahheh</creatorcontrib><creatorcontrib>Chang, Chih-Wei</creatorcontrib><creatorcontrib>Eidex, Zach</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Antonio Vera-Sanchez, Juan</creatorcontrib><creatorcontrib>Rodriguez-Vila, Borja</creatorcontrib><creatorcontrib>Malpica, Norberto</creatorcontrib><creatorcontrib>Torrado-Carvajal, Angel</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><title>Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk. Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the resolution and detail necessary for accurate dosimetry, especially in proton therapy. This study aims to enhance ART by introducing an innovative approach that synthesizes dual-energy computed tomography (DECT) images from CBCT scans using a novel 3D conditional denoising diffusion probabilistic model (DDPM) multi-decoder. This method seeks to improve dose calculations in ART planning, enhancing tissue characterization. We utilized a paired CBCT-DECT dataset from 54 head and neck cancer patients to train and validate our DDPM model. The model employs a multi-decoder Swin-UNET architecture that synthesizes high-resolution DECT images by progressively reducing noise and artifacts in CBCT scans through a controlled diffusion process. The proposed method demonstrated superior performance in synthesizing DECT images (High DECT MAE 39.582 ± 0.855 and Low DECT MAE 48.540± 1.833) with significantly enhanced signal-to-noise ratio and reduced artifacts compared to traditional GAN-based methods. It showed marked improvements in tissue characterization and anatomical structure similarity, critical for precise proton and radiation therapy planning. This research has opened a new avenue in CBCT-CT synthesis for ART/APT by generating DECT images using an enhanced DDPM approach. The demonstrated similarity between the synthesized DECT images and ground truth images suggests that these synthetic volumes can be used for accurate dose calculations, leading to better adaptation in treatment planning.</description><subject>adaptive proton therapy</subject><subject>Cone-Beam Computed Tomography - methods</subject><subject>DECT synthesis</subject><subject>Diffusion</subject><subject>diffusion model</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Head and Neck Neoplasms - radiotherapy</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Statistical</subject><subject>Proton Therapy - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Image-Guided - methods</subject><subject>Signal-To-Noise Ratio</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kb1u2zAUhYkiReMm3TMFHDNUNSmJEtWtEZI2gIEuzkzw59JlIJMKKQXxa_SJS9eOt0wEDr5zLu-5CF1R8o0Szpe0amjRsIYspeGsbj-gxUk6QwtCKlp0lLFz9DmlJ0Io5WX9CZ1XXcUrzpsF-nv3Og4hOr_BZpYDBg9xs8P9Gqedn_5Acgk7j_vbfl0omcBgaeQ4uRfAURoXMhLluMPSGzzGMAWPj9J3LMdxcFpOLovBYgM-uPR_krN2Tns5W5RUbnBpchpvg4EhXaKPVg4JvhzfC_R4f7fufxWr3z8f-h-rQpe0mwpWdkzrCtoOqNJ1C5a0HYO8FiVGtqVqNOFGKd7JEuqWqLZVtiSW16VVTc2qC3RzyM2feJ4hTWLrkoZhkB7CnERFKSMdI6zMKDmgOoaUIlgxRreVcScoEftLiH3tYl-7OFwiW66P6bPagjkZ3qrPwNcD4MIonsIcfV72_bx_KiCUqw</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Viar-Hernandez, David</creator><creator>Manuel Molina-Maza, Juan</creator><creator>Pan, Shaoyan</creator><creator>Salari, Elahheh</creator><creator>Chang, Chih-Wei</creator><creator>Eidex, Zach</creator><creator>Zhou, Jun</creator><creator>Antonio Vera-Sanchez, Juan</creator><creator>Rodriguez-Vila, Borja</creator><creator>Malpica, Norberto</creator><creator>Torrado-Carvajal, Angel</creator><creator>Yang, Xiaofeng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4618-7459</orcidid><orcidid>https://orcid.org/0000-0001-9023-5855</orcidid><orcidid>https://orcid.org/0000-0002-1938-2980</orcidid><orcidid>https://orcid.org/0000-0002-3818-4381</orcidid><orcidid>https://orcid.org/0009-0007-1040-0189</orcidid><orcidid>https://orcid.org/0000-0002-1540-2809</orcidid><orcidid>https://orcid.org/0000-0002-6078-9424</orcidid><orcidid>https://orcid.org/0009-0007-7137-2572</orcidid><orcidid>https://orcid.org/0000-0002-3594-9457</orcidid><orcidid>https://orcid.org/0000-0002-0848-8157</orcidid><orcidid>https://orcid.org/0000-0003-4779-0225</orcidid></search><sort><creationdate>20241018</creationdate><title>Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models</title><author>Viar-Hernandez, David ; Manuel Molina-Maza, Juan ; Pan, Shaoyan ; Salari, Elahheh ; Chang, Chih-Wei ; Eidex, Zach ; Zhou, Jun ; Antonio Vera-Sanchez, Juan ; Rodriguez-Vila, Borja ; Malpica, Norberto ; Torrado-Carvajal, Angel ; Yang, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-5295cc3e79e1bc47ef0795e38810da72b6c08dbb89a2e470b77bf20f842fb6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive proton therapy</topic><topic>Cone-Beam Computed Tomography - methods</topic><topic>DECT synthesis</topic><topic>Diffusion</topic><topic>diffusion model</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Head and Neck Neoplasms - radiotherapy</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Statistical</topic><topic>Proton Therapy - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Image-Guided - methods</topic><topic>Signal-To-Noise Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viar-Hernandez, David</creatorcontrib><creatorcontrib>Manuel Molina-Maza, Juan</creatorcontrib><creatorcontrib>Pan, Shaoyan</creatorcontrib><creatorcontrib>Salari, Elahheh</creatorcontrib><creatorcontrib>Chang, Chih-Wei</creatorcontrib><creatorcontrib>Eidex, Zach</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Antonio Vera-Sanchez, Juan</creatorcontrib><creatorcontrib>Rodriguez-Vila, Borja</creatorcontrib><creatorcontrib>Malpica, Norberto</creatorcontrib><creatorcontrib>Torrado-Carvajal, Angel</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viar-Hernandez, David</au><au>Manuel Molina-Maza, Juan</au><au>Pan, Shaoyan</au><au>Salari, Elahheh</au><au>Chang, Chih-Wei</au><au>Eidex, Zach</au><au>Zhou, Jun</au><au>Antonio Vera-Sanchez, Juan</au><au>Rodriguez-Vila, Borja</au><au>Malpica, Norberto</au><au>Torrado-Carvajal, Angel</au><au>Yang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>69</volume><issue>21</issue><spage>215011</spage><pages>215011-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk. Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the resolution and detail necessary for accurate dosimetry, especially in proton therapy. This study aims to enhance ART by introducing an innovative approach that synthesizes dual-energy computed tomography (DECT) images from CBCT scans using a novel 3D conditional denoising diffusion probabilistic model (DDPM) multi-decoder. This method seeks to improve dose calculations in ART planning, enhancing tissue characterization. We utilized a paired CBCT-DECT dataset from 54 head and neck cancer patients to train and validate our DDPM model. The model employs a multi-decoder Swin-UNET architecture that synthesizes high-resolution DECT images by progressively reducing noise and artifacts in CBCT scans through a controlled diffusion process. The proposed method demonstrated superior performance in synthesizing DECT images (High DECT MAE 39.582 ± 0.855 and Low DECT MAE 48.540± 1.833) with significantly enhanced signal-to-noise ratio and reduced artifacts compared to traditional GAN-based methods. It showed marked improvements in tissue characterization and anatomical structure similarity, critical for precise proton and radiation therapy planning. This research has opened a new avenue in CBCT-CT synthesis for ART/APT by generating DECT images using an enhanced DDPM approach. The demonstrated similarity between the synthesized DECT images and ground truth images suggests that these synthetic volumes can be used for accurate dose calculations, leading to better adaptation in treatment planning.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39383886</pmid><doi>10.1088/1361-6560/ad8547</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4618-7459</orcidid><orcidid>https://orcid.org/0000-0001-9023-5855</orcidid><orcidid>https://orcid.org/0000-0002-1938-2980</orcidid><orcidid>https://orcid.org/0000-0002-3818-4381</orcidid><orcidid>https://orcid.org/0009-0007-1040-0189</orcidid><orcidid>https://orcid.org/0000-0002-1540-2809</orcidid><orcidid>https://orcid.org/0000-0002-6078-9424</orcidid><orcidid>https://orcid.org/0009-0007-7137-2572</orcidid><orcidid>https://orcid.org/0000-0002-3594-9457</orcidid><orcidid>https://orcid.org/0000-0002-0848-8157</orcidid><orcidid>https://orcid.org/0000-0003-4779-0225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-10, Vol.69 (21), p.215011
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_iop_journals_10_1088_1361_6560_ad8547
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects adaptive proton therapy
Cone-Beam Computed Tomography - methods
DECT synthesis
Diffusion
diffusion model
Head and Neck Neoplasms - diagnostic imaging
Head and Neck Neoplasms - radiotherapy
Humans
Image Processing, Computer-Assisted - methods
Models, Statistical
Proton Therapy - methods
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Image-Guided - methods
Signal-To-Noise Ratio
title Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20dual%20energy%20CT%20synthesis%20in%20CBCT-based%20adaptive%20radiotherapy%20and%20proton%20therapy:%20application%20of%20denoising%20diffusion%20probabilistic%20models&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Viar-Hernandez,%20David&rft.date=2024-10-18&rft.volume=69&rft.issue=21&rft.spage=215011&rft.pages=215011-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad8547&rft_dat=%3Cproquest_iop_j%3E3115095052%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115095052&rft_id=info:pmid/39383886&rfr_iscdi=true