Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT

Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2020-09, Vol.65 (18), p.185011-185011
Hauptverfasser: Braig, Eva-Maria, Pfeiffer, Daniela, Willner, Marian, Sellerer, Thorsten, Taphorn, Kirsten, Petrich, Christian, Scholz, Josef, Petzold, Lisa, Birnbacher, Lorenz, Dierolf, Martin, Pfeiffer, Franz, Herzen, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185011
container_issue 18
container_start_page 185011
container_title Physics in medicine & biology
container_volume 65
creator Braig, Eva-Maria
Pfeiffer, Daniela
Willner, Marian
Sellerer, Thorsten
Taphorn, Kirsten
Petrich, Christian
Scholz, Josef
Petzold, Lisa
Birnbacher, Lorenz
Dierolf, Martin
Pfeiffer, Franz
Herzen, Julia
description Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.
doi_str_mv 10.1088/1361-6560/ab9704
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6560_ab9704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407584496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-404da7cc4483b79899e365e60db607cc7d982b5e3eb5f18f521db38b4fc1fa7b3</originalsourceid><addsrcrecordid>eNp9kUtLxDAURoMoOj72rqRLF8ZJmqRNlzL4AsGFIy5Dkt46lbapSYr6780woytxdcnlfB_cE4ROKbmkRMo5ZQXFhSjIXJuqJHwHzX5Xu2hGCKO4okIcoMMQ3gihVOZ8Hx2wnBckF2SGXp7a4bWDLIxgo5_6LK48AO51BN_qLqvBun50oY2tG7KPNq6yV69jCmGjA9TZJ_b6KxtX6YGtG6LXIWaL5THaa3QX4GQ7j9DzzfVycYcfHm_vF1cP2HJKI-aE17q0lnPJTFnJqgJWCChIbQqS9mVdydwIYGBEQ2UjclobJg1vLG10adgROt_0jt69TxCi6ttgoev0AG4KKuekFJLzqkgo2aDWuxA8NGr0ba_9l6JErXWqtTu1dqc2OlPkbNs-mR7q38CPvwRcbIDWjerNTX5Ix_7Xd_4HPvYmUYqmgBTpj9RYN-wbZI-MCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407584496</pqid></control><display><type>article</type><title>Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Braig, Eva-Maria ; Pfeiffer, Daniela ; Willner, Marian ; Sellerer, Thorsten ; Taphorn, Kirsten ; Petrich, Christian ; Scholz, Josef ; Petzold, Lisa ; Birnbacher, Lorenz ; Dierolf, Martin ; Pfeiffer, Franz ; Herzen, Julia</creator><creatorcontrib>Braig, Eva-Maria ; Pfeiffer, Daniela ; Willner, Marian ; Sellerer, Thorsten ; Taphorn, Kirsten ; Petrich, Christian ; Scholz, Josef ; Petzold, Lisa ; Birnbacher, Lorenz ; Dierolf, Martin ; Pfeiffer, Franz ; Herzen, Julia</creatorcontrib><description>Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab9704</identifier><identifier>PMID: 32460250</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>grating-based phase-contrast ; material decomposition ; x-ray dark-field imaging ; x-ray phase-contrast imaging</subject><ispartof>Physics in medicine &amp; biology, 2020-09, Vol.65 (18), p.185011-185011</ispartof><rights>2020 Institute of Physics and Engineering in Medicine</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-404da7cc4483b79899e365e60db607cc7d982b5e3eb5f18f521db38b4fc1fa7b3</citedby><cites>FETCH-LOGICAL-c411t-404da7cc4483b79899e365e60db607cc7d982b5e3eb5f18f521db38b4fc1fa7b3</cites><orcidid>0000-0002-7275-0447 ; 0000-0001-5150-2949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab9704/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32460250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braig, Eva-Maria</creatorcontrib><creatorcontrib>Pfeiffer, Daniela</creatorcontrib><creatorcontrib>Willner, Marian</creatorcontrib><creatorcontrib>Sellerer, Thorsten</creatorcontrib><creatorcontrib>Taphorn, Kirsten</creatorcontrib><creatorcontrib>Petrich, Christian</creatorcontrib><creatorcontrib>Scholz, Josef</creatorcontrib><creatorcontrib>Petzold, Lisa</creatorcontrib><creatorcontrib>Birnbacher, Lorenz</creatorcontrib><creatorcontrib>Dierolf, Martin</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><creatorcontrib>Herzen, Julia</creatorcontrib><title>Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.</description><subject>grating-based phase-contrast</subject><subject>material decomposition</subject><subject>x-ray dark-field imaging</subject><subject>x-ray phase-contrast imaging</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kUtLxDAURoMoOj72rqRLF8ZJmqRNlzL4AsGFIy5Dkt46lbapSYr6780woytxdcnlfB_cE4ROKbmkRMo5ZQXFhSjIXJuqJHwHzX5Xu2hGCKO4okIcoMMQ3gihVOZ8Hx2wnBckF2SGXp7a4bWDLIxgo5_6LK48AO51BN_qLqvBun50oY2tG7KPNq6yV69jCmGjA9TZJ_b6KxtX6YGtG6LXIWaL5THaa3QX4GQ7j9DzzfVycYcfHm_vF1cP2HJKI-aE17q0lnPJTFnJqgJWCChIbQqS9mVdydwIYGBEQ2UjclobJg1vLG10adgROt_0jt69TxCi6ttgoev0AG4KKuekFJLzqkgo2aDWuxA8NGr0ba_9l6JErXWqtTu1dqc2OlPkbNs-mR7q38CPvwRcbIDWjerNTX5Ix_7Xd_4HPvYmUYqmgBTpj9RYN-wbZI-MCA</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Braig, Eva-Maria</creator><creator>Pfeiffer, Daniela</creator><creator>Willner, Marian</creator><creator>Sellerer, Thorsten</creator><creator>Taphorn, Kirsten</creator><creator>Petrich, Christian</creator><creator>Scholz, Josef</creator><creator>Petzold, Lisa</creator><creator>Birnbacher, Lorenz</creator><creator>Dierolf, Martin</creator><creator>Pfeiffer, Franz</creator><creator>Herzen, Julia</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7275-0447</orcidid><orcidid>https://orcid.org/0000-0001-5150-2949</orcidid></search><sort><creationdate>20200921</creationdate><title>Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT</title><author>Braig, Eva-Maria ; Pfeiffer, Daniela ; Willner, Marian ; Sellerer, Thorsten ; Taphorn, Kirsten ; Petrich, Christian ; Scholz, Josef ; Petzold, Lisa ; Birnbacher, Lorenz ; Dierolf, Martin ; Pfeiffer, Franz ; Herzen, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-404da7cc4483b79899e365e60db607cc7d982b5e3eb5f18f521db38b4fc1fa7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>grating-based phase-contrast</topic><topic>material decomposition</topic><topic>x-ray dark-field imaging</topic><topic>x-ray phase-contrast imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braig, Eva-Maria</creatorcontrib><creatorcontrib>Pfeiffer, Daniela</creatorcontrib><creatorcontrib>Willner, Marian</creatorcontrib><creatorcontrib>Sellerer, Thorsten</creatorcontrib><creatorcontrib>Taphorn, Kirsten</creatorcontrib><creatorcontrib>Petrich, Christian</creatorcontrib><creatorcontrib>Scholz, Josef</creatorcontrib><creatorcontrib>Petzold, Lisa</creatorcontrib><creatorcontrib>Birnbacher, Lorenz</creatorcontrib><creatorcontrib>Dierolf, Martin</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><creatorcontrib>Herzen, Julia</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braig, Eva-Maria</au><au>Pfeiffer, Daniela</au><au>Willner, Marian</au><au>Sellerer, Thorsten</au><au>Taphorn, Kirsten</au><au>Petrich, Christian</au><au>Scholz, Josef</au><au>Petzold, Lisa</au><au>Birnbacher, Lorenz</au><au>Dierolf, Martin</au><au>Pfeiffer, Franz</au><au>Herzen, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2020-09-21</date><risdate>2020</risdate><volume>65</volume><issue>18</issue><spage>185011</spage><epage>185011</epage><pages>185011-185011</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>32460250</pmid><doi>10.1088/1361-6560/ab9704</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7275-0447</orcidid><orcidid>https://orcid.org/0000-0001-5150-2949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2020-09, Vol.65 (18), p.185011-185011
issn 0031-9155
1361-6560
language eng
recordid cdi_iop_journals_10_1088_1361_6560_ab9704
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects grating-based phase-contrast
material decomposition
x-ray dark-field imaging
x-ray phase-contrast imaging
title Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20spectrum%20three-material%20decomposition%20with%20grating-based%20x-ray%20phase-contrast%20CT&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Braig,%20Eva-Maria&rft.date=2020-09-21&rft.volume=65&rft.issue=18&rft.spage=185011&rft.epage=185011&rft.pages=185011-185011&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab9704&rft_dat=%3Cproquest_iop_j%3E2407584496%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407584496&rft_id=info:pmid/32460250&rfr_iscdi=true