A dual-stream deep convolutional network for reducing metal streak artifacts in CT images

Machine learning and deep learning are rapidly finding applications in the medical imaging field. In this paper, we address the long-standing problem of metal artifacts in computed tomography (CT) images by training a dual-stream deep convolutional neural network for streak removal. While many metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2019-11, Vol.64 (23), p.235003-235003
Hauptverfasser: Gjesteby, Lars, Shan, Hongming, Yang, Qingsong, Xi, Yan, Jin, Yannan, Giantsoudi, Drosoula, Paganetti, Harald, De Man, Bruno, Wang, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235003
container_issue 23
container_start_page 235003
container_title Physics in medicine & biology
container_volume 64
creator Gjesteby, Lars
Shan, Hongming
Yang, Qingsong
Xi, Yan
Jin, Yannan
Giantsoudi, Drosoula
Paganetti, Harald
De Man, Bruno
Wang, Ge
description Machine learning and deep learning are rapidly finding applications in the medical imaging field. In this paper, we address the long-standing problem of metal artifacts in computed tomography (CT) images by training a dual-stream deep convolutional neural network for streak removal. While many metal artifact reduction methods exist, even state-of-the-art algorithms fall short in some clinical applications. Specifically, proton therapy planning requires high image quality with accurate tumor volumes to ensure treatment success. We explore a dual-stream deep network structure with residual learning to correct metal streak artifacts after a first-pass by a state-of-the-art interpolation-based algorithm, NMAR. We provide the network with a mask of the streaks in order to focus attention on those areas. Our experiments compare a mean squared error loss function with a perceptual loss function to emphasize preservation of image features and texture. Both visual and quantitative metrics are used to assess the resulting image quality for metal implant cases. Success may be due to the duality of information processing, with one network stream performing local structure correction, while the other stream provides an attention mechanism to destreak effectively. This study shows that image-domain deep learning can be highly effective for metal artifact reduction (MAR), and highlights the benefits and drawbacks of different loss functions for solving a major CT reconstruction challenge.
doi_str_mv 10.1088/1361-6560/ab4e3e
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6560_ab4e3e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306500715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-446c079cba1562e12d1692bd1c053d588ff091fe295ede0330a91dd0d8b1d3443</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EouVjZ0IeGQjcxbGbjFXFl1SJBQYmy7EvKDSJi52A-PektLAxnXT3vK9OD2NnCFcIeX6NQmGipIJrU2YkaI9N_1b7bAogMClQygk7ivENADFPs0M2Eagwn6XZlL3MuRtMk8Q-kGm5I1pz67sP3wx97TvT8I76Tx9WvPKBB3KDrbtX3lI_nn5CK25CX1fG9pHXHV888bo1rxRP2EFlmkinu3nMnm9vnhb3yfLx7mExXyZWCNUnWaYszApbGpQqJUwdqiItHVqQwsk8ryoosKK0kOQIhABToHPg8hKdyDJxzC62vevg3weKvW7raKlpTEd-iDoVoCTADOWIwha1wccYqNLrMD4bvjSC3gjVG3t6Y09vhY6R8137ULbk_gK_BkfgcgvUfq3f_BBGZ_H_vm-8xX9L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306500715</pqid></control><display><type>article</type><title>A dual-stream deep convolutional network for reducing metal streak artifacts in CT images</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gjesteby, Lars ; Shan, Hongming ; Yang, Qingsong ; Xi, Yan ; Jin, Yannan ; Giantsoudi, Drosoula ; Paganetti, Harald ; De Man, Bruno ; Wang, Ge</creator><creatorcontrib>Gjesteby, Lars ; Shan, Hongming ; Yang, Qingsong ; Xi, Yan ; Jin, Yannan ; Giantsoudi, Drosoula ; Paganetti, Harald ; De Man, Bruno ; Wang, Ge</creatorcontrib><description>Machine learning and deep learning are rapidly finding applications in the medical imaging field. In this paper, we address the long-standing problem of metal artifacts in computed tomography (CT) images by training a dual-stream deep convolutional neural network for streak removal. While many metal artifact reduction methods exist, even state-of-the-art algorithms fall short in some clinical applications. Specifically, proton therapy planning requires high image quality with accurate tumor volumes to ensure treatment success. We explore a dual-stream deep network structure with residual learning to correct metal streak artifacts after a first-pass by a state-of-the-art interpolation-based algorithm, NMAR. We provide the network with a mask of the streaks in order to focus attention on those areas. Our experiments compare a mean squared error loss function with a perceptual loss function to emphasize preservation of image features and texture. Both visual and quantitative metrics are used to assess the resulting image quality for metal implant cases. Success may be due to the duality of information processing, with one network stream performing local structure correction, while the other stream provides an attention mechanism to destreak effectively. This study shows that image-domain deep learning can be highly effective for metal artifact reduction (MAR), and highlights the benefits and drawbacks of different loss functions for solving a major CT reconstruction challenge.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab4e3e</identifier><identifier>PMID: 31618724</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Deep Learning ; Humans ; Image Processing, Computer-Assisted - methods ; Machine Learning ; metal artifact reduction ; Metals ; Neural Networks, Computer ; Pedicle Screws ; Prostheses and Implants ; Proton Therapy ; Reproducibility of Results ; Tomography, X-Ray Computed ; Visible Human Projects ; x-ray computed tomography</subject><ispartof>Physics in medicine &amp; biology, 2019-11, Vol.64 (23), p.235003-235003</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-446c079cba1562e12d1692bd1c053d588ff091fe295ede0330a91dd0d8b1d3443</citedby><cites>FETCH-LOGICAL-c336t-446c079cba1562e12d1692bd1c053d588ff091fe295ede0330a91dd0d8b1d3443</cites><orcidid>0000-0002-2656-7705 ; 0000-0002-5021-7705 ; 0000-0002-0604-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab4e3e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31618724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gjesteby, Lars</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Yang, Qingsong</creatorcontrib><creatorcontrib>Xi, Yan</creatorcontrib><creatorcontrib>Jin, Yannan</creatorcontrib><creatorcontrib>Giantsoudi, Drosoula</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>De Man, Bruno</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><title>A dual-stream deep convolutional network for reducing metal streak artifacts in CT images</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Machine learning and deep learning are rapidly finding applications in the medical imaging field. In this paper, we address the long-standing problem of metal artifacts in computed tomography (CT) images by training a dual-stream deep convolutional neural network for streak removal. While many metal artifact reduction methods exist, even state-of-the-art algorithms fall short in some clinical applications. Specifically, proton therapy planning requires high image quality with accurate tumor volumes to ensure treatment success. We explore a dual-stream deep network structure with residual learning to correct metal streak artifacts after a first-pass by a state-of-the-art interpolation-based algorithm, NMAR. We provide the network with a mask of the streaks in order to focus attention on those areas. Our experiments compare a mean squared error loss function with a perceptual loss function to emphasize preservation of image features and texture. Both visual and quantitative metrics are used to assess the resulting image quality for metal implant cases. Success may be due to the duality of information processing, with one network stream performing local structure correction, while the other stream provides an attention mechanism to destreak effectively. This study shows that image-domain deep learning can be highly effective for metal artifact reduction (MAR), and highlights the benefits and drawbacks of different loss functions for solving a major CT reconstruction challenge.</description><subject>Algorithms</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>metal artifact reduction</subject><subject>Metals</subject><subject>Neural Networks, Computer</subject><subject>Pedicle Screws</subject><subject>Prostheses and Implants</subject><subject>Proton Therapy</subject><subject>Reproducibility of Results</subject><subject>Tomography, X-Ray Computed</subject><subject>Visible Human Projects</subject><subject>x-ray computed tomography</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EouVjZ0IeGQjcxbGbjFXFl1SJBQYmy7EvKDSJi52A-PektLAxnXT3vK9OD2NnCFcIeX6NQmGipIJrU2YkaI9N_1b7bAogMClQygk7ivENADFPs0M2Eagwn6XZlL3MuRtMk8Q-kGm5I1pz67sP3wx97TvT8I76Tx9WvPKBB3KDrbtX3lI_nn5CK25CX1fG9pHXHV888bo1rxRP2EFlmkinu3nMnm9vnhb3yfLx7mExXyZWCNUnWaYszApbGpQqJUwdqiItHVqQwsk8ryoosKK0kOQIhABToHPg8hKdyDJxzC62vevg3weKvW7raKlpTEd-iDoVoCTADOWIwha1wccYqNLrMD4bvjSC3gjVG3t6Y09vhY6R8137ULbk_gK_BkfgcgvUfq3f_BBGZ_H_vm-8xX9L</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Gjesteby, Lars</creator><creator>Shan, Hongming</creator><creator>Yang, Qingsong</creator><creator>Xi, Yan</creator><creator>Jin, Yannan</creator><creator>Giantsoudi, Drosoula</creator><creator>Paganetti, Harald</creator><creator>De Man, Bruno</creator><creator>Wang, Ge</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-5021-7705</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></search><sort><creationdate>20191126</creationdate><title>A dual-stream deep convolutional network for reducing metal streak artifacts in CT images</title><author>Gjesteby, Lars ; Shan, Hongming ; Yang, Qingsong ; Xi, Yan ; Jin, Yannan ; Giantsoudi, Drosoula ; Paganetti, Harald ; De Man, Bruno ; Wang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-446c079cba1562e12d1692bd1c053d588ff091fe295ede0330a91dd0d8b1d3443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>metal artifact reduction</topic><topic>Metals</topic><topic>Neural Networks, Computer</topic><topic>Pedicle Screws</topic><topic>Prostheses and Implants</topic><topic>Proton Therapy</topic><topic>Reproducibility of Results</topic><topic>Tomography, X-Ray Computed</topic><topic>Visible Human Projects</topic><topic>x-ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gjesteby, Lars</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Yang, Qingsong</creatorcontrib><creatorcontrib>Xi, Yan</creatorcontrib><creatorcontrib>Jin, Yannan</creatorcontrib><creatorcontrib>Giantsoudi, Drosoula</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>De Man, Bruno</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gjesteby, Lars</au><au>Shan, Hongming</au><au>Yang, Qingsong</au><au>Xi, Yan</au><au>Jin, Yannan</au><au>Giantsoudi, Drosoula</au><au>Paganetti, Harald</au><au>De Man, Bruno</au><au>Wang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dual-stream deep convolutional network for reducing metal streak artifacts in CT images</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-11-26</date><risdate>2019</risdate><volume>64</volume><issue>23</issue><spage>235003</spage><epage>235003</epage><pages>235003-235003</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Machine learning and deep learning are rapidly finding applications in the medical imaging field. In this paper, we address the long-standing problem of metal artifacts in computed tomography (CT) images by training a dual-stream deep convolutional neural network for streak removal. While many metal artifact reduction methods exist, even state-of-the-art algorithms fall short in some clinical applications. Specifically, proton therapy planning requires high image quality with accurate tumor volumes to ensure treatment success. We explore a dual-stream deep network structure with residual learning to correct metal streak artifacts after a first-pass by a state-of-the-art interpolation-based algorithm, NMAR. We provide the network with a mask of the streaks in order to focus attention on those areas. Our experiments compare a mean squared error loss function with a perceptual loss function to emphasize preservation of image features and texture. Both visual and quantitative metrics are used to assess the resulting image quality for metal implant cases. Success may be due to the duality of information processing, with one network stream performing local structure correction, while the other stream provides an attention mechanism to destreak effectively. This study shows that image-domain deep learning can be highly effective for metal artifact reduction (MAR), and highlights the benefits and drawbacks of different loss functions for solving a major CT reconstruction challenge.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31618724</pmid><doi>10.1088/1361-6560/ab4e3e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-5021-7705</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2019-11, Vol.64 (23), p.235003-235003
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_iop_journals_10_1088_1361_6560_ab4e3e
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
Deep Learning
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
metal artifact reduction
Metals
Neural Networks, Computer
Pedicle Screws
Prostheses and Implants
Proton Therapy
Reproducibility of Results
Tomography, X-Ray Computed
Visible Human Projects
x-ray computed tomography
title A dual-stream deep convolutional network for reducing metal streak artifacts in CT images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dual-stream%20deep%20convolutional%20network%20for%20reducing%20metal%20streak%20artifacts%20in%20CT%20images&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Gjesteby,%20Lars&rft.date=2019-11-26&rft.volume=64&rft.issue=23&rft.spage=235003&rft.epage=235003&rft.pages=235003-235003&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab4e3e&rft_dat=%3Cproquest_iop_j%3E2306500715%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306500715&rft_id=info:pmid/31618724&rfr_iscdi=true