An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction
Positron emission tomography (PET) iterative 3D reconstruction is a very computational demanding task. One of the main issues of the iterative reconstruction concerns the management of the system response matrix (SRM). The SRM models the relationship between the projection and the voxel space and it...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2018-09, Vol.63 (19), p.195005-195005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195005 |
---|---|
container_issue | 19 |
container_start_page | 195005 |
container_title | Physics in medicine & biology |
container_volume | 63 |
creator | Camarlinghi, Niccolò Sportelli, Giancarlo Guerra, Alberto Del Belcari, Nicola |
description | Positron emission tomography (PET) iterative 3D reconstruction is a very computational demanding task. One of the main issues of the iterative reconstruction concerns the management of the system response matrix (SRM). The SRM models the relationship between the projection and the voxel space and its memory footprint can easily exceed hundreds of GB. Moreover, in order to make the reconstruction fast enough not to hinder its practical application, the SRM must be stored in the random access memory of the workstation used for the reconstruction. This issue is normally solved by implementing efficient storage schemes and by reducing the number of redundant patterns in the SRM through symmetries. However, finding a sufficient number of symmetries is often non-trivial and is typically performed using dedicated solutions that cannot be exported to different detectors and geometries. In this paper, an automatic approach to reduce the memory footprint of a pre-computed SRM is described. The proposed approach was named symmetry search algorithm (SSA) and consists in an algorithm that searches for some of the redundant patterns present in the SRM, leading to its lossy compression. This approach was built to detect translations, reflections and coordinates swap in voxel space. Therefore, it is particularly well suited for those scanners where some of the rotational symmetries are broken, e.g. small animal scanner where the modules are arranged in a polygonal ring made of few elements, and dual head planar PET systems. In order to validate this approach, the SSA is applied to the SRM of a preclinical scanner (the IRIS PET/CT). The data acquired by the scanner were reconstructed with a dedicated maximum likelihood estimation maximization algorithm with both the uncompressed and the compressed SRMs. The results achieved show that the information lost due to the SSA compression is negligible. Compression factors up to 52 when using the SSA together with manually inserted symmetries and up to 204 when using the SSA alone, can be obtained for the IRIS SRM. These results come without significant differences in the values and in the main quality metrics of the reconstructed images, i.e. spatial resolution and noise. Although the compression factors depend on the system considered, the SSA is applicable to any SRM and therefore it can be considered a general tool to reduce the footprint of a pre-computed SRM. |
doi_str_mv | 10.1088/1361-6560/aae12b |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6560_aae12b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103671131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-5cef3a7aa41ed26ba9af61c9caa6ea1b289d6fb4bfdb398dd9583997c736833a3</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0Eokvhzgn5yIFQT7zxxseq4kuqxAXO1sSZdF3FsbEd1P0F_G282qVcQLJka_R-jB_GXoN4D6Lvr0AqaFSnxBUiQTs8YZvH0VO2EUJCo6HrLtiLnO-FAOjb7XN2IUULoLTYsF_XC8e1BI_FWY7zXUiu7D0vgdNDnIMrvOyJ54P3VJKjzMN0nuRCnifKMSyZeA1I7oG7hceQXUlh4eRdzq4-any4Sxj3B-4KpVr1k6rTVmNJqy1V85I9m3DO9Op8X7LvHz98u_nc3H799OXm-raxW4DSdJYmiTvELdDYqgE1TgqstoiKEIa216Oahu0wjYPU_Tjqrpda7-xOql5KlJfs7Sk3pvBjpVxMXdLSPONCYc2mBSHVDkBClYqT1KaQc6LJxOQ8poMBYY74zZG1ObI2J_zV8uacvg6exkfDH95_612I5j6saamfNdEPRkkDup5OiM7EcarSd_-Q_rf6N5PzoWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103671131</pqid></control><display><type>article</type><title>An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Camarlinghi, Niccolò ; Sportelli, Giancarlo ; Guerra, Alberto Del ; Belcari, Nicola</creator><creatorcontrib>Camarlinghi, Niccolò ; Sportelli, Giancarlo ; Guerra, Alberto Del ; Belcari, Nicola</creatorcontrib><description>Positron emission tomography (PET) iterative 3D reconstruction is a very computational demanding task. One of the main issues of the iterative reconstruction concerns the management of the system response matrix (SRM). The SRM models the relationship between the projection and the voxel space and its memory footprint can easily exceed hundreds of GB. Moreover, in order to make the reconstruction fast enough not to hinder its practical application, the SRM must be stored in the random access memory of the workstation used for the reconstruction. This issue is normally solved by implementing efficient storage schemes and by reducing the number of redundant patterns in the SRM through symmetries. However, finding a sufficient number of symmetries is often non-trivial and is typically performed using dedicated solutions that cannot be exported to different detectors and geometries. In this paper, an automatic approach to reduce the memory footprint of a pre-computed SRM is described. The proposed approach was named symmetry search algorithm (SSA) and consists in an algorithm that searches for some of the redundant patterns present in the SRM, leading to its lossy compression. This approach was built to detect translations, reflections and coordinates swap in voxel space. Therefore, it is particularly well suited for those scanners where some of the rotational symmetries are broken, e.g. small animal scanner where the modules are arranged in a polygonal ring made of few elements, and dual head planar PET systems. In order to validate this approach, the SSA is applied to the SRM of a preclinical scanner (the IRIS PET/CT). The data acquired by the scanner were reconstructed with a dedicated maximum likelihood estimation maximization algorithm with both the uncompressed and the compressed SRMs. The results achieved show that the information lost due to the SSA compression is negligible. Compression factors up to 52 when using the SSA together with manually inserted symmetries and up to 204 when using the SSA alone, can be obtained for the IRIS SRM. These results come without significant differences in the values and in the main quality metrics of the reconstructed images, i.e. spatial resolution and noise. Although the compression factors depend on the system considered, the SSA is applicable to any SRM and therefore it can be considered a general tool to reduce the footprint of a pre-computed SRM.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aae12b</identifier><identifier>PMID: 30211690</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Automation ; Data Compression ; Imaging, Three-Dimensional - methods ; Phantoms, Imaging ; positron emission tomography (PET) iterative reconstruction ; Positron Emission Tomography Computed Tomography ; symmetries ; system response matrix</subject><ispartof>Physics in medicine & biology, 2018-09, Vol.63 (19), p.195005-195005</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-5cef3a7aa41ed26ba9af61c9caa6ea1b289d6fb4bfdb398dd9583997c736833a3</citedby><cites>FETCH-LOGICAL-c411t-5cef3a7aa41ed26ba9af61c9caa6ea1b289d6fb4bfdb398dd9583997c736833a3</cites><orcidid>0000-0001-9982-0292 ; 0000-0003-2297-4941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aae12b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30211690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Camarlinghi, Niccolò</creatorcontrib><creatorcontrib>Sportelli, Giancarlo</creatorcontrib><creatorcontrib>Guerra, Alberto Del</creatorcontrib><creatorcontrib>Belcari, Nicola</creatorcontrib><title>An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Positron emission tomography (PET) iterative 3D reconstruction is a very computational demanding task. One of the main issues of the iterative reconstruction concerns the management of the system response matrix (SRM). The SRM models the relationship between the projection and the voxel space and its memory footprint can easily exceed hundreds of GB. Moreover, in order to make the reconstruction fast enough not to hinder its practical application, the SRM must be stored in the random access memory of the workstation used for the reconstruction. This issue is normally solved by implementing efficient storage schemes and by reducing the number of redundant patterns in the SRM through symmetries. However, finding a sufficient number of symmetries is often non-trivial and is typically performed using dedicated solutions that cannot be exported to different detectors and geometries. In this paper, an automatic approach to reduce the memory footprint of a pre-computed SRM is described. The proposed approach was named symmetry search algorithm (SSA) and consists in an algorithm that searches for some of the redundant patterns present in the SRM, leading to its lossy compression. This approach was built to detect translations, reflections and coordinates swap in voxel space. Therefore, it is particularly well suited for those scanners where some of the rotational symmetries are broken, e.g. small animal scanner where the modules are arranged in a polygonal ring made of few elements, and dual head planar PET systems. In order to validate this approach, the SSA is applied to the SRM of a preclinical scanner (the IRIS PET/CT). The data acquired by the scanner were reconstructed with a dedicated maximum likelihood estimation maximization algorithm with both the uncompressed and the compressed SRMs. The results achieved show that the information lost due to the SSA compression is negligible. Compression factors up to 52 when using the SSA together with manually inserted symmetries and up to 204 when using the SSA alone, can be obtained for the IRIS SRM. These results come without significant differences in the values and in the main quality metrics of the reconstructed images, i.e. spatial resolution and noise. Although the compression factors depend on the system considered, the SSA is applicable to any SRM and therefore it can be considered a general tool to reduce the footprint of a pre-computed SRM.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Data Compression</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Phantoms, Imaging</subject><subject>positron emission tomography (PET) iterative reconstruction</subject><subject>Positron Emission Tomography Computed Tomography</subject><subject>symmetries</subject><subject>system response matrix</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1v1DAQhi0Eokvhzgn5yIFQT7zxxseq4kuqxAXO1sSZdF3FsbEd1P0F_G282qVcQLJka_R-jB_GXoN4D6Lvr0AqaFSnxBUiQTs8YZvH0VO2EUJCo6HrLtiLnO-FAOjb7XN2IUULoLTYsF_XC8e1BI_FWY7zXUiu7D0vgdNDnIMrvOyJ54P3VJKjzMN0nuRCnifKMSyZeA1I7oG7hceQXUlh4eRdzq4-any4Sxj3B-4KpVr1k6rTVmNJqy1V85I9m3DO9Op8X7LvHz98u_nc3H799OXm-raxW4DSdJYmiTvELdDYqgE1TgqstoiKEIa216Oahu0wjYPU_Tjqrpda7-xOql5KlJfs7Sk3pvBjpVxMXdLSPONCYc2mBSHVDkBClYqT1KaQc6LJxOQ8poMBYY74zZG1ObI2J_zV8uacvg6exkfDH95_612I5j6saamfNdEPRkkDup5OiM7EcarSd_-Q_rf6N5PzoWA</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Camarlinghi, Niccolò</creator><creator>Sportelli, Giancarlo</creator><creator>Guerra, Alberto Del</creator><creator>Belcari, Nicola</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9982-0292</orcidid><orcidid>https://orcid.org/0000-0003-2297-4941</orcidid></search><sort><creationdate>20180928</creationdate><title>An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction</title><author>Camarlinghi, Niccolò ; Sportelli, Giancarlo ; Guerra, Alberto Del ; Belcari, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-5cef3a7aa41ed26ba9af61c9caa6ea1b289d6fb4bfdb398dd9583997c736833a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Data Compression</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Phantoms, Imaging</topic><topic>positron emission tomography (PET) iterative reconstruction</topic><topic>Positron Emission Tomography Computed Tomography</topic><topic>symmetries</topic><topic>system response matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camarlinghi, Niccolò</creatorcontrib><creatorcontrib>Sportelli, Giancarlo</creatorcontrib><creatorcontrib>Guerra, Alberto Del</creatorcontrib><creatorcontrib>Belcari, Nicola</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camarlinghi, Niccolò</au><au>Sportelli, Giancarlo</au><au>Guerra, Alberto Del</au><au>Belcari, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2018-09-28</date><risdate>2018</risdate><volume>63</volume><issue>19</issue><spage>195005</spage><epage>195005</epage><pages>195005-195005</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Positron emission tomography (PET) iterative 3D reconstruction is a very computational demanding task. One of the main issues of the iterative reconstruction concerns the management of the system response matrix (SRM). The SRM models the relationship between the projection and the voxel space and its memory footprint can easily exceed hundreds of GB. Moreover, in order to make the reconstruction fast enough not to hinder its practical application, the SRM must be stored in the random access memory of the workstation used for the reconstruction. This issue is normally solved by implementing efficient storage schemes and by reducing the number of redundant patterns in the SRM through symmetries. However, finding a sufficient number of symmetries is often non-trivial and is typically performed using dedicated solutions that cannot be exported to different detectors and geometries. In this paper, an automatic approach to reduce the memory footprint of a pre-computed SRM is described. The proposed approach was named symmetry search algorithm (SSA) and consists in an algorithm that searches for some of the redundant patterns present in the SRM, leading to its lossy compression. This approach was built to detect translations, reflections and coordinates swap in voxel space. Therefore, it is particularly well suited for those scanners where some of the rotational symmetries are broken, e.g. small animal scanner where the modules are arranged in a polygonal ring made of few elements, and dual head planar PET systems. In order to validate this approach, the SSA is applied to the SRM of a preclinical scanner (the IRIS PET/CT). The data acquired by the scanner were reconstructed with a dedicated maximum likelihood estimation maximization algorithm with both the uncompressed and the compressed SRMs. The results achieved show that the information lost due to the SSA compression is negligible. Compression factors up to 52 when using the SSA together with manually inserted symmetries and up to 204 when using the SSA alone, can be obtained for the IRIS SRM. These results come without significant differences in the values and in the main quality metrics of the reconstructed images, i.e. spatial resolution and noise. Although the compression factors depend on the system considered, the SSA is applicable to any SRM and therefore it can be considered a general tool to reduce the footprint of a pre-computed SRM.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30211690</pmid><doi>10.1088/1361-6560/aae12b</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9982-0292</orcidid><orcidid>https://orcid.org/0000-0003-2297-4941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2018-09, Vol.63 (19), p.195005-195005 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6560_aae12b |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals; MEDLINE |
subjects | Algorithms Automation Data Compression Imaging, Three-Dimensional - methods Phantoms, Imaging positron emission tomography (PET) iterative reconstruction Positron Emission Tomography Computed Tomography symmetries system response matrix |
title | An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20algorithm%20to%20exploit%20the%20symmetries%20of%20the%20system%20response%20matrix%20in%20positron%20emission%20tomography%20iterative%20reconstruction&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Camarlinghi,%20Niccol%C3%B2&rft.date=2018-09-28&rft.volume=63&rft.issue=19&rft.spage=195005&rft.epage=195005&rft.pages=195005-195005&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aae12b&rft_dat=%3Cproquest_iop_j%3E2103671131%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103671131&rft_id=info:pmid/30211690&rfr_iscdi=true |