Characteristic approach to the soliton resolution

As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4 d equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2022-08, Vol.35 (8), p.4585-4598
Hauptverfasser: Bizoń, Piotr, Cownden, Bradley, Maliborski, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4598
container_issue 8
container_start_page 4585
container_title Nonlinearity
container_volume 35
creator Bizoń, Piotr
Cownden, Bradley
Maliborski, Maciej
description As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4 d equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations in analyzing the relaxation processes due to the dispersal of energy by radiation. In particular, within this approach it is evident that the endstate of evolution must be non-radiative (meaning vanishing flux of energy at future null infinity). In our toy model such non-radiative configurations are given by a static solution (called the half-kink) plus an alternating chain of N decoupled kinks and antikinks. We show numerically that the configurations N = 0 (static half-kink) and N = 1 (superposition of the static half-kink and the antikink which recedes to infinity) appear as generic attractors and we determine a codimension-one borderline between their basins of attraction. The rates of convergence to these attractors are analyzed in detail.
doi_str_mv 10.1088/1361-6544/ac7b04
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ac7b04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac7b04</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-e6e161e25eda2af0bae5c62c42b2f10a5785f582c51abd6de88a0b05436c90533</originalsourceid><addsrcrecordid>eNp9jzFPwzAQhS0EEqWwM2ZhI_TOzjnuiCIoSJVYYLYujqOmKnFkuwP_nlZFTIjpnk7vPb1PiFuEBwRjFqg0lpqqasGubqE6E7Pf17mYwZKwrGukS3GV0hYA0Ug1E9hsOLLLPg4pD67gaYqB3abIocgbX6SwG3IYi-gPap-HMF6Li553yd_83Ln4eH56b17K9dvqtXlcl06RzKXXHjV6Sb5jyT207Mlp6SrZyh6BqTbUk5GOkNtOd94YhhaoUtotgZSaCzj1uhhSir63Uxw-OX5ZBHtEtkc-e-SzJ-RD5P4UGcJkt2Efx8PA_-x3f9jHMFpF1tiKDNmp69U3HNRkvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristic approach to the soliton resolution</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bizoń, Piotr ; Cownden, Bradley ; Maliborski, Maciej</creator><creatorcontrib>Bizoń, Piotr ; Cownden, Bradley ; Maliborski, Maciej</creatorcontrib><description>As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4 d equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations in analyzing the relaxation processes due to the dispersal of energy by radiation. In particular, within this approach it is evident that the endstate of evolution must be non-radiative (meaning vanishing flux of energy at future null infinity). In our toy model such non-radiative configurations are given by a static solution (called the half-kink) plus an alternating chain of N decoupled kinks and antikinks. We show numerically that the configurations N = 0 (static half-kink) and N = 1 (superposition of the static half-kink and the antikink which recedes to infinity) appear as generic attractors and we determine a codimension-one borderline between their basins of attraction. The rates of convergence to these attractors are analyzed in detail.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac7b04</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>dispersive wave equations ; soliton resolution ; Yang–Mills</subject><ispartof>Nonlinearity, 2022-08, Vol.35 (8), p.4585-4598</ispartof><rights>2022 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-e6e161e25eda2af0bae5c62c42b2f10a5785f582c51abd6de88a0b05436c90533</citedby><cites>FETCH-LOGICAL-c352t-e6e161e25eda2af0bae5c62c42b2f10a5785f582c51abd6de88a0b05436c90533</cites><orcidid>0000-0003-4319-8240 ; 0000-0002-5831-1384 ; 0000-0002-8621-9761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac7b04/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Bizoń, Piotr</creatorcontrib><creatorcontrib>Cownden, Bradley</creatorcontrib><creatorcontrib>Maliborski, Maciej</creatorcontrib><title>Characteristic approach to the soliton resolution</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4 d equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations in analyzing the relaxation processes due to the dispersal of energy by radiation. In particular, within this approach it is evident that the endstate of evolution must be non-radiative (meaning vanishing flux of energy at future null infinity). In our toy model such non-radiative configurations are given by a static solution (called the half-kink) plus an alternating chain of N decoupled kinks and antikinks. We show numerically that the configurations N = 0 (static half-kink) and N = 1 (superposition of the static half-kink and the antikink which recedes to infinity) appear as generic attractors and we determine a codimension-one borderline between their basins of attraction. The rates of convergence to these attractors are analyzed in detail.</description><subject>dispersive wave equations</subject><subject>soliton resolution</subject><subject>Yang–Mills</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9jzFPwzAQhS0EEqWwM2ZhI_TOzjnuiCIoSJVYYLYujqOmKnFkuwP_nlZFTIjpnk7vPb1PiFuEBwRjFqg0lpqqasGubqE6E7Pf17mYwZKwrGukS3GV0hYA0Ug1E9hsOLLLPg4pD67gaYqB3abIocgbX6SwG3IYi-gPap-HMF6Li553yd_83Ln4eH56b17K9dvqtXlcl06RzKXXHjV6Sb5jyT207Mlp6SrZyh6BqTbUk5GOkNtOd94YhhaoUtotgZSaCzj1uhhSir63Uxw-OX5ZBHtEtkc-e-SzJ-RD5P4UGcJkt2Efx8PA_-x3f9jHMFpF1tiKDNmp69U3HNRkvQ</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Bizoń, Piotr</creator><creator>Cownden, Bradley</creator><creator>Maliborski, Maciej</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4319-8240</orcidid><orcidid>https://orcid.org/0000-0002-5831-1384</orcidid><orcidid>https://orcid.org/0000-0002-8621-9761</orcidid></search><sort><creationdate>20220804</creationdate><title>Characteristic approach to the soliton resolution</title><author>Bizoń, Piotr ; Cownden, Bradley ; Maliborski, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-e6e161e25eda2af0bae5c62c42b2f10a5785f582c51abd6de88a0b05436c90533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>dispersive wave equations</topic><topic>soliton resolution</topic><topic>Yang–Mills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bizoń, Piotr</creatorcontrib><creatorcontrib>Cownden, Bradley</creatorcontrib><creatorcontrib>Maliborski, Maciej</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bizoń, Piotr</au><au>Cownden, Bradley</au><au>Maliborski, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic approach to the soliton resolution</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-08-04</date><risdate>2022</risdate><volume>35</volume><issue>8</issue><spage>4585</spage><epage>4598</epage><pages>4585-4598</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4 d equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations in analyzing the relaxation processes due to the dispersal of energy by radiation. In particular, within this approach it is evident that the endstate of evolution must be non-radiative (meaning vanishing flux of energy at future null infinity). In our toy model such non-radiative configurations are given by a static solution (called the half-kink) plus an alternating chain of N decoupled kinks and antikinks. We show numerically that the configurations N = 0 (static half-kink) and N = 1 (superposition of the static half-kink and the antikink which recedes to infinity) appear as generic attractors and we determine a codimension-one borderline between their basins of attraction. The rates of convergence to these attractors are analyzed in detail.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac7b04</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4319-8240</orcidid><orcidid>https://orcid.org/0000-0002-5831-1384</orcidid><orcidid>https://orcid.org/0000-0002-8621-9761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2022-08, Vol.35 (8), p.4585-4598
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_ac7b04
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects dispersive wave equations
soliton resolution
Yang–Mills
title Characteristic approach to the soliton resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20approach%20to%20the%20soliton%20resolution&rft.jtitle=Nonlinearity&rft.au=Bizo%C5%84,%20Piotr&rft.date=2022-08-04&rft.volume=35&rft.issue=8&rft.spage=4585&rft.epage=4598&rft.pages=4585-4598&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac7b04&rft_dat=%3Ciop_cross%3Enonac7b04%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true