Non-singular Morse–Smale flows on n-manifolds with attractor–repeller dynamics

In the present paper the exhaustive classification up to topological equivalence of non-singular Morse–Smale flows on n -manifolds M n with exactly two periodic orbits is presented. Denote by G 2 ( M n ) the set of such flows. Let a flow f t : M n → M n belongs to the set G 2 ( M n ). Hyperbolicity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2022-03, Vol.35 (3), p.1485-1499
Hauptverfasser: Pochinka, O V, Shubin, D D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 3
container_start_page 1485
container_title Nonlinearity
container_volume 35
creator Pochinka, O V
Shubin, D D
description In the present paper the exhaustive classification up to topological equivalence of non-singular Morse–Smale flows on n -manifolds M n with exactly two periodic orbits is presented. Denote by G 2 ( M n ) the set of such flows. Let a flow f t : M n → M n belongs to the set G 2 ( M n ). Hyperbolicity of periodic orbits of f t implies that among them one is an attracting and the other is a repelling orbit. Due to the Poincaré–Hopf theorem, the Euler characteristic of the ambient manifold M n is zero. Only the torus and the Klein bottle can be ambient manifolds for f t in case of n = 2. The authors established that there are exactly two classes of topological equivalence of flows in G 2 ( M 2 ) if M 2 is the torus and three classes if M 2 is the Klein bottle. For all odd-dimensional manifolds the Euler characteristic is zero. However, it is known that an orientable three-manifold admits a flow from G 2 ( M 3 ) if and only if M 3 is a lens space L p , q . In this paper it is proved that every set G 2 ( L p , q ) contains exactly two classes of topological equivalence of flows, except the case when L p , q is homeomorphic to the three-sphere S 3 or the projective space R P 3 , where such a class is unique. Also, it is shown that the only non-orientable n -manifold (for n > 2), which admits flows from G 2 ( M n ) is the twisted I-bundle over the ( n − 1)-sphere S n − 1 × ~ S 1 . Moreover, there are exactly two classes of topological equivalence of flows in G 2 ( S n − 1 × ~ S 1 ) . Among orientable n -manifolds only the product of the ( n − 1)-sphere and the circle S n − 1 × S 1 can be ambient manifolds for flows from G 2 ( M n ) and G 2 ( S n − 1 × S 1 ) splits into two topological equivalence classes.
doi_str_mv 10.1088/1361-6544/ac4c2c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ac4c2c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac4c2c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-68613a0a024ba9ca8c84dd1873333c6e592c0e34c5e7c088bd1839668d15d23b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKt7l9m4MzaZXCazlOINqoKXdcgkGZ2SSYZkSunOd_ANfRKnVFyJZ3PgnP8__OcD4JTgC4KlnBEqCBKcsZk2zBRmD0x-R_tggitOUFkSfgiOcl5iTIgs6AQ8PcSAchveVl4neB9Tdl8fn8-d9g42Pq4zjAEG1OnQNtHbDNft8A71MCRthphGbXK9894laDdBd63Jx-Cg0T67k58-Ba_XVy_zW7R4vLmbXy6QoQQPSEhBqMYaF6zWldHSSGYtkSUdywjHq8JgR5nhrjTjh_W4o5UQ0hJuC1rTKcC7uybFnJNrVJ_aTqeNIlhtmagtALUFoHZMRsv5ztLGXi3jKoUx4H_ysz_kIQZFuaKKMMlVbxv6DUGacpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-singular Morse–Smale flows on n-manifolds with attractor–repeller dynamics</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Pochinka, O V ; Shubin, D D</creator><creatorcontrib>Pochinka, O V ; Shubin, D D</creatorcontrib><description>In the present paper the exhaustive classification up to topological equivalence of non-singular Morse–Smale flows on n -manifolds M n with exactly two periodic orbits is presented. Denote by G 2 ( M n ) the set of such flows. Let a flow f t : M n → M n belongs to the set G 2 ( M n ). Hyperbolicity of periodic orbits of f t implies that among them one is an attracting and the other is a repelling orbit. Due to the Poincaré–Hopf theorem, the Euler characteristic of the ambient manifold M n is zero. Only the torus and the Klein bottle can be ambient manifolds for f t in case of n = 2. The authors established that there are exactly two classes of topological equivalence of flows in G 2 ( M 2 ) if M 2 is the torus and three classes if M 2 is the Klein bottle. For all odd-dimensional manifolds the Euler characteristic is zero. However, it is known that an orientable three-manifold admits a flow from G 2 ( M 3 ) if and only if M 3 is a lens space L p , q . In this paper it is proved that every set G 2 ( L p , q ) contains exactly two classes of topological equivalence of flows, except the case when L p , q is homeomorphic to the three-sphere S 3 or the projective space R P 3 , where such a class is unique. Also, it is shown that the only non-orientable n -manifold (for n &gt; 2), which admits flows from G 2 ( M n ) is the twisted I-bundle over the ( n − 1)-sphere S n − 1 × ~ S 1 . Moreover, there are exactly two classes of topological equivalence of flows in G 2 ( S n − 1 × ~ S 1 ) . Among orientable n -manifolds only the product of the ( n − 1)-sphere and the circle S n − 1 × S 1 can be ambient manifolds for flows from G 2 ( M n ) and G 2 ( S n − 1 × S 1 ) splits into two topological equivalence classes.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac4c2c</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Morse–Smale flows ; nonsingular flows ; topological classification</subject><ispartof>Nonlinearity, 2022-03, Vol.35 (3), p.1485-1499</ispartof><rights>2022 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-68613a0a024ba9ca8c84dd1873333c6e592c0e34c5e7c088bd1839668d15d23b3</citedby><cites>FETCH-LOGICAL-c310t-68613a0a024ba9ca8c84dd1873333c6e592c0e34c5e7c088bd1839668d15d23b3</cites><orcidid>0000-0002-8495-4826 ; 0000-0002-6587-5305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac4c2c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Pochinka, O V</creatorcontrib><creatorcontrib>Shubin, D D</creatorcontrib><title>Non-singular Morse–Smale flows on n-manifolds with attractor–repeller dynamics</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In the present paper the exhaustive classification up to topological equivalence of non-singular Morse–Smale flows on n -manifolds M n with exactly two periodic orbits is presented. Denote by G 2 ( M n ) the set of such flows. Let a flow f t : M n → M n belongs to the set G 2 ( M n ). Hyperbolicity of periodic orbits of f t implies that among them one is an attracting and the other is a repelling orbit. Due to the Poincaré–Hopf theorem, the Euler characteristic of the ambient manifold M n is zero. Only the torus and the Klein bottle can be ambient manifolds for f t in case of n = 2. The authors established that there are exactly two classes of topological equivalence of flows in G 2 ( M 2 ) if M 2 is the torus and three classes if M 2 is the Klein bottle. For all odd-dimensional manifolds the Euler characteristic is zero. However, it is known that an orientable three-manifold admits a flow from G 2 ( M 3 ) if and only if M 3 is a lens space L p , q . In this paper it is proved that every set G 2 ( L p , q ) contains exactly two classes of topological equivalence of flows, except the case when L p , q is homeomorphic to the three-sphere S 3 or the projective space R P 3 , where such a class is unique. Also, it is shown that the only non-orientable n -manifold (for n &gt; 2), which admits flows from G 2 ( M n ) is the twisted I-bundle over the ( n − 1)-sphere S n − 1 × ~ S 1 . Moreover, there are exactly two classes of topological equivalence of flows in G 2 ( S n − 1 × ~ S 1 ) . Among orientable n -manifolds only the product of the ( n − 1)-sphere and the circle S n − 1 × S 1 can be ambient manifolds for flows from G 2 ( M n ) and G 2 ( S n − 1 × S 1 ) splits into two topological equivalence classes.</description><subject>Morse–Smale flows</subject><subject>nonsingular flows</subject><subject>topological classification</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKt7l9m4MzaZXCazlOINqoKXdcgkGZ2SSYZkSunOd_ANfRKnVFyJZ3PgnP8__OcD4JTgC4KlnBEqCBKcsZk2zBRmD0x-R_tggitOUFkSfgiOcl5iTIgs6AQ8PcSAchveVl4neB9Tdl8fn8-d9g42Pq4zjAEG1OnQNtHbDNft8A71MCRthphGbXK9894laDdBd63Jx-Cg0T67k58-Ba_XVy_zW7R4vLmbXy6QoQQPSEhBqMYaF6zWldHSSGYtkSUdywjHq8JgR5nhrjTjh_W4o5UQ0hJuC1rTKcC7uybFnJNrVJ_aTqeNIlhtmagtALUFoHZMRsv5ztLGXi3jKoUx4H_ysz_kIQZFuaKKMMlVbxv6DUGacpA</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Pochinka, O V</creator><creator>Shubin, D D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8495-4826</orcidid><orcidid>https://orcid.org/0000-0002-6587-5305</orcidid></search><sort><creationdate>20220303</creationdate><title>Non-singular Morse–Smale flows on n-manifolds with attractor–repeller dynamics</title><author>Pochinka, O V ; Shubin, D D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-68613a0a024ba9ca8c84dd1873333c6e592c0e34c5e7c088bd1839668d15d23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Morse–Smale flows</topic><topic>nonsingular flows</topic><topic>topological classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pochinka, O V</creatorcontrib><creatorcontrib>Shubin, D D</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pochinka, O V</au><au>Shubin, D D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-singular Morse–Smale flows on n-manifolds with attractor–repeller dynamics</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1485</spage><epage>1499</epage><pages>1485-1499</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In the present paper the exhaustive classification up to topological equivalence of non-singular Morse–Smale flows on n -manifolds M n with exactly two periodic orbits is presented. Denote by G 2 ( M n ) the set of such flows. Let a flow f t : M n → M n belongs to the set G 2 ( M n ). Hyperbolicity of periodic orbits of f t implies that among them one is an attracting and the other is a repelling orbit. Due to the Poincaré–Hopf theorem, the Euler characteristic of the ambient manifold M n is zero. Only the torus and the Klein bottle can be ambient manifolds for f t in case of n = 2. The authors established that there are exactly two classes of topological equivalence of flows in G 2 ( M 2 ) if M 2 is the torus and three classes if M 2 is the Klein bottle. For all odd-dimensional manifolds the Euler characteristic is zero. However, it is known that an orientable three-manifold admits a flow from G 2 ( M 3 ) if and only if M 3 is a lens space L p , q . In this paper it is proved that every set G 2 ( L p , q ) contains exactly two classes of topological equivalence of flows, except the case when L p , q is homeomorphic to the three-sphere S 3 or the projective space R P 3 , where such a class is unique. Also, it is shown that the only non-orientable n -manifold (for n &gt; 2), which admits flows from G 2 ( M n ) is the twisted I-bundle over the ( n − 1)-sphere S n − 1 × ~ S 1 . Moreover, there are exactly two classes of topological equivalence of flows in G 2 ( S n − 1 × ~ S 1 ) . Among orientable n -manifolds only the product of the ( n − 1)-sphere and the circle S n − 1 × S 1 can be ambient manifolds for flows from G 2 ( M n ) and G 2 ( S n − 1 × S 1 ) splits into two topological equivalence classes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac4c2c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8495-4826</orcidid><orcidid>https://orcid.org/0000-0002-6587-5305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2022-03, Vol.35 (3), p.1485-1499
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_ac4c2c
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects Morse–Smale flows
nonsingular flows
topological classification
title Non-singular Morse–Smale flows on n-manifolds with attractor–repeller dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-singular%20Morse%E2%80%93Smale%20flows%20on%20n-manifolds%20with%20attractor%E2%80%93repeller%20dynamics&rft.jtitle=Nonlinearity&rft.au=Pochinka,%20O%20V&rft.date=2022-03-03&rft.volume=35&rft.issue=3&rft.spage=1485&rft.epage=1499&rft.pages=1485-1499&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac4c2c&rft_dat=%3Ciop_cross%3Enonac4c2c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true