Exponential law for random maps on compact manifoldsThis work was partially supported by FAPESB, CNPq, CAPES, FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. N Haydn is supported by Simons Foundation: Collaboration Grants for Mathematicians: ID 526571

We consider random dynamical systems on manifolds modelled by a skew product which have certain geometric properties and whose measures satisfy quenched decay of correlations at a sufficient rate. We prove that the limiting distribution for the hitting and return times to geometric balls are both ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2020-10, Vol.33 (12), p.6760-6789
Hauptverfasser: Haydn, Nicolai T A, Rousseau, Jérôme, Yang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6789
container_issue 12
container_start_page 6760
container_title Nonlinearity
container_volume 33
creator Haydn, Nicolai T A
Rousseau, Jérôme
Yang, Fan
description We consider random dynamical systems on manifolds modelled by a skew product which have certain geometric properties and whose measures satisfy quenched decay of correlations at a sufficient rate. We prove that the limiting distribution for the hitting and return times to geometric balls are both exponential for almost every realisation. We then apply this result to random C2 maps of the interval, random parabolic maps on the unit interval and random perturbation of partially hyperbolic attractors on a compact Riemannian manifold.
doi_str_mv 10.1088/1361-6544/aba88a
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_aba88a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaba88a</sourcerecordid><originalsourceid>FETCH-iop_journals_10_1088_1361_6544_aba88a3</originalsourceid><addsrcrecordid>eNqVUk1v2zAM9YYNWPZx35HHFnBqy6ljr7fWcdYeUhiNczYY24mV2ZImycjyu_YHR6XdgB53EUGKenyPep73lYVXLEzTgM3mbDqPr68D3GKa4ltv8q_0zpuE32I2TRIWf_A-GnMIQ8bSaDZ58zv_paRoheXYQ49H2EkNGkUjBxhQGZACajkorC3lgu9k35iy4waOUv-AIxpQqN3r_gRmVEpq2zawPcHytsjXdz5kj8VPOl3mwzIrQWl5aAmuKBdZsLotp8XmKYhSliRBFLLEhyO3HQi0XAoitRtFY3wgSg41W20KuNg8LO4C0kBqozAKL-lNx-sOiJZrfyFAs15DXayyMl9fnrHyUUvVogBj9VjbUf8dBbbTctx3FFvHda9xMLDMF_mTDw5cP9-QatFq03EFuNdtO9ASSZPjcwWPcI-nRjhCr5ay5oMUhCYJ6MzqBjLZ97iV-pzCd9q9NedfWCHNGahccxTmBh4WEEfzOGGfvfc77E375SV-8vxlXmb3Uy5VdZCjJq2mYmHljFE5F1TOBdWzMWb_2f4HuH-_gA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exponential law for random maps on compact manifoldsThis work was partially supported by FAPESB, CNPq, CAPES, FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. N Haydn is supported by Simons Foundation: Collaboration Grants for Mathematicians: ID 526571</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Haydn, Nicolai T A ; Rousseau, Jérôme ; Yang, Fan</creator><creatorcontrib>Haydn, Nicolai T A ; Rousseau, Jérôme ; Yang, Fan</creatorcontrib><description>We consider random dynamical systems on manifolds modelled by a skew product which have certain geometric properties and whose measures satisfy quenched decay of correlations at a sufficient rate. We prove that the limiting distribution for the hitting and return times to geometric balls are both exponential for almost every realisation. We then apply this result to random C2 maps of the interval, random parabolic maps on the unit interval and random perturbation of partially hyperbolic attractors on a compact Riemannian manifold.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aba88a</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>entry and return times ; exponential law ; random dynamical systems</subject><ispartof>Nonlinearity, 2020-10, Vol.33 (12), p.6760-6789</ispartof><rights>2020 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4954-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/aba88a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Haydn, Nicolai T A</creatorcontrib><creatorcontrib>Rousseau, Jérôme</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><title>Exponential law for random maps on compact manifoldsThis work was partially supported by FAPESB, CNPq, CAPES, FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. N Haydn is supported by Simons Foundation: Collaboration Grants for Mathematicians: ID 526571</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We consider random dynamical systems on manifolds modelled by a skew product which have certain geometric properties and whose measures satisfy quenched decay of correlations at a sufficient rate. We prove that the limiting distribution for the hitting and return times to geometric balls are both exponential for almost every realisation. We then apply this result to random C2 maps of the interval, random parabolic maps on the unit interval and random perturbation of partially hyperbolic attractors on a compact Riemannian manifold.</description><subject>entry and return times</subject><subject>exponential law</subject><subject>random dynamical systems</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVUk1v2zAM9YYNWPZx35HHFnBqy6ljr7fWcdYeUhiNczYY24mV2ZImycjyu_YHR6XdgB53EUGKenyPep73lYVXLEzTgM3mbDqPr68D3GKa4ltv8q_0zpuE32I2TRIWf_A-GnMIQ8bSaDZ58zv_paRoheXYQ49H2EkNGkUjBxhQGZACajkorC3lgu9k35iy4waOUv-AIxpQqN3r_gRmVEpq2zawPcHytsjXdz5kj8VPOl3mwzIrQWl5aAmuKBdZsLotp8XmKYhSliRBFLLEhyO3HQi0XAoitRtFY3wgSg41W20KuNg8LO4C0kBqozAKL-lNx-sOiJZrfyFAs15DXayyMl9fnrHyUUvVogBj9VjbUf8dBbbTctx3FFvHda9xMLDMF_mTDw5cP9-QatFq03EFuNdtO9ASSZPjcwWPcI-nRjhCr5ay5oMUhCYJ6MzqBjLZ97iV-pzCd9q9NedfWCHNGahccxTmBh4WEEfzOGGfvfc77E375SV-8vxlXmb3Uy5VdZCjJq2mYmHljFE5F1TOBdWzMWb_2f4HuH-_gA</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Haydn, Nicolai T A</creator><creator>Rousseau, Jérôme</creator><creator>Yang, Fan</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0002-4954-9681</orcidid></search><sort><creationdate>20201020</creationdate><title>Exponential law for random maps on compact manifoldsThis work was partially supported by FAPESB, CNPq, CAPES, FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. N Haydn is supported by Simons Foundation: Collaboration Grants for Mathematicians: ID 526571</title><author>Haydn, Nicolai T A ; Rousseau, Jérôme ; Yang, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-iop_journals_10_1088_1361_6544_aba88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>entry and return times</topic><topic>exponential law</topic><topic>random dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haydn, Nicolai T A</creatorcontrib><creatorcontrib>Rousseau, Jérôme</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haydn, Nicolai T A</au><au>Rousseau, Jérôme</au><au>Yang, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential law for random maps on compact manifoldsThis work was partially supported by FAPESB, CNPq, CAPES, FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. N Haydn is supported by Simons Foundation: Collaboration Grants for Mathematicians: ID 526571</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-10-20</date><risdate>2020</risdate><volume>33</volume><issue>12</issue><spage>6760</spage><epage>6789</epage><pages>6760-6789</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We consider random dynamical systems on manifolds modelled by a skew product which have certain geometric properties and whose measures satisfy quenched decay of correlations at a sufficient rate. We prove that the limiting distribution for the hitting and return times to geometric balls are both exponential for almost every realisation. We then apply this result to random C2 maps of the interval, random parabolic maps on the unit interval and random perturbation of partially hyperbolic attractors on a compact Riemannian manifold.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aba88a</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-4954-9681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2020-10, Vol.33 (12), p.6760-6789
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_aba88a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects entry and return times
exponential law
random dynamical systems
title Exponential law for random maps on compact manifoldsThis work was partially supported by FAPESB, CNPq, CAPES, FCT project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UIDB/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. N Haydn is supported by Simons Foundation: Collaboration Grants for Mathematicians: ID 526571
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20law%20for%20random%20maps%20on%20compact%20manifoldsThis%20work%20was%20partially%20supported%20by%20FAPESB,%20CNPq,%20CAPES,%20FCT%20project%20PTDC/MAT-PUR/28177/2017,%20with%20national%20funds,%20and%20by%20CMUP%20(UIDB/00144/2020),%20which%20is%20funded%20by%20FCT%20with%20national%20(MCTES)%20and%20European%20structural%20funds%20through%20the%20programs%20FEDER,%20under%20the%20partnership%20agreement%20PT2020.%20N%20Haydn%20is%20supported%20by%20Simons%20Foundation:%20Collaboration%20Grants%20for%20Mathematicians:%20ID%20526571&rft.jtitle=Nonlinearity&rft.au=Haydn,%20Nicolai%20T%20A&rft.date=2020-10-20&rft.volume=33&rft.issue=12&rft.spage=6760&rft.epage=6789&rft.pages=6760-6789&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aba88a&rft_dat=%3Ciop%3Enonaba88a%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true