Variational order for forced Lagrangian systems II. Euler-Poincaré equations with forcing

In this paper we provide a variational derivation of the Euler-Poincaré equations for systems subjected to external forces using an adaptation of the techniques introduced by Galley and others Martín de Diego and Martín de Almagro (2018 Nonlinearity 31 3814-3846), Galley (2013 Phys. Rev. Lett. 110 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2020-08, Vol.33 (8), p.3709-3738
Hauptverfasser: Martín de Diego, D, Martín de Almagro, R T Sato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3738
container_issue 8
container_start_page 3709
container_title Nonlinearity
container_volume 33
creator Martín de Diego, D
Martín de Almagro, R T Sato
description In this paper we provide a variational derivation of the Euler-Poincaré equations for systems subjected to external forces using an adaptation of the techniques introduced by Galley and others Martín de Diego and Martín de Almagro (2018 Nonlinearity 31 3814-3846), Galley (2013 Phys. Rev. Lett. 110 174301), Galley et al (2014 (arXiv:[math-Ph] 1412.3082)). Moreover, we study in detail the underlying geometry which is related to the notion of Poisson groupoid. Finally, we apply the previous construction to the formal derivation of the variational error for numerical integrators of forced Euler-Poincaré equations and the application of this theory to the derivation of geometric integrators for forced systems.
doi_str_mv 10.1088/1361-6544/ab8bb1
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ab8bb1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab8bb1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-147ed29aea2df84f26609e78eb0408d10020cbc084db4a31ec8ea1ba24df8d113</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM3phI-1d7CbOiKoClSrBAAws1iV2iqs2LnYq1EfiOXgx0hYxwXA66fT9v3QfY5cIAwSlhigyTLKRlEMqVVniEev9no5ZD4oRJnmOo1N2FuMCAFGlosdeXyg4ap1vaMl9MDbw2u-nsobPaB6omTtqeNzG1q4in04HfLJZ2pA8etdUFL4-uX3f7Csi_3Dt2z7smvk5O6lpGe3Fz-6z59vJ0_g-mT3cTcc3s6QSCG2CMrcmLchSamol6zTLoLC5siVIUAYBUqjKCpQ0pSSBtlKWsKRUdrhBFH0Gh94q-BiDrfU6uBWFrUbQOzd6J0LvROiDmy5ydYg4v9YLvwnd91E3vtFCaKVFDoVem7rjrv_g_q39BlJmdLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variational order for forced Lagrangian systems II. Euler-Poincaré equations with forcing</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Martín de Diego, D ; Martín de Almagro, R T Sato</creator><creatorcontrib>Martín de Diego, D ; Martín de Almagro, R T Sato</creatorcontrib><description>In this paper we provide a variational derivation of the Euler-Poincaré equations for systems subjected to external forces using an adaptation of the techniques introduced by Galley and others Martín de Diego and Martín de Almagro (2018 Nonlinearity 31 3814-3846), Galley (2013 Phys. Rev. Lett. 110 174301), Galley et al (2014 (arXiv:[math-Ph] 1412.3082)). Moreover, we study in detail the underlying geometry which is related to the notion of Poisson groupoid. Finally, we apply the previous construction to the formal derivation of the variational error for numerical integrators of forced Euler-Poincaré equations and the application of this theory to the derivation of geometric integrators for forced systems.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab8bb1</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Euler-Poincaré equations ; forced systems ; geometric integration ; variational integrators</subject><ispartof>Nonlinearity, 2020-08, Vol.33 (8), p.3709-3738</ispartof><rights>2020 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-147ed29aea2df84f26609e78eb0408d10020cbc084db4a31ec8ea1ba24df8d113</citedby><cites>FETCH-LOGICAL-c310t-147ed29aea2df84f26609e78eb0408d10020cbc084db4a31ec8ea1ba24df8d113</cites><orcidid>0000-0001-6762-8909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ab8bb1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Martín de Diego, D</creatorcontrib><creatorcontrib>Martín de Almagro, R T Sato</creatorcontrib><title>Variational order for forced Lagrangian systems II. Euler-Poincaré equations with forcing</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper we provide a variational derivation of the Euler-Poincaré equations for systems subjected to external forces using an adaptation of the techniques introduced by Galley and others Martín de Diego and Martín de Almagro (2018 Nonlinearity 31 3814-3846), Galley (2013 Phys. Rev. Lett. 110 174301), Galley et al (2014 (arXiv:[math-Ph] 1412.3082)). Moreover, we study in detail the underlying geometry which is related to the notion of Poisson groupoid. Finally, we apply the previous construction to the formal derivation of the variational error for numerical integrators of forced Euler-Poincaré equations and the application of this theory to the derivation of geometric integrators for forced systems.</description><subject>Euler-Poincaré equations</subject><subject>forced systems</subject><subject>geometric integration</subject><subject>variational integrators</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM3phI-1d7CbOiKoClSrBAAws1iV2iqs2LnYq1EfiOXgx0hYxwXA66fT9v3QfY5cIAwSlhigyTLKRlEMqVVniEev9no5ZD4oRJnmOo1N2FuMCAFGlosdeXyg4ap1vaMl9MDbw2u-nsobPaB6omTtqeNzG1q4in04HfLJZ2pA8etdUFL4-uX3f7Csi_3Dt2z7smvk5O6lpGe3Fz-6z59vJ0_g-mT3cTcc3s6QSCG2CMrcmLchSamol6zTLoLC5siVIUAYBUqjKCpQ0pSSBtlKWsKRUdrhBFH0Gh94q-BiDrfU6uBWFrUbQOzd6J0LvROiDmy5ydYg4v9YLvwnd91E3vtFCaKVFDoVem7rjrv_g_q39BlJmdLc</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Martín de Diego, D</creator><creator>Martín de Almagro, R T Sato</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6762-8909</orcidid></search><sort><creationdate>20200801</creationdate><title>Variational order for forced Lagrangian systems II. Euler-Poincaré equations with forcing</title><author>Martín de Diego, D ; Martín de Almagro, R T Sato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-147ed29aea2df84f26609e78eb0408d10020cbc084db4a31ec8ea1ba24df8d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Euler-Poincaré equations</topic><topic>forced systems</topic><topic>geometric integration</topic><topic>variational integrators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín de Diego, D</creatorcontrib><creatorcontrib>Martín de Almagro, R T Sato</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín de Diego, D</au><au>Martín de Almagro, R T Sato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational order for forced Lagrangian systems II. Euler-Poincaré equations with forcing</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>33</volume><issue>8</issue><spage>3709</spage><epage>3738</epage><pages>3709-3738</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper we provide a variational derivation of the Euler-Poincaré equations for systems subjected to external forces using an adaptation of the techniques introduced by Galley and others Martín de Diego and Martín de Almagro (2018 Nonlinearity 31 3814-3846), Galley (2013 Phys. Rev. Lett. 110 174301), Galley et al (2014 (arXiv:[math-Ph] 1412.3082)). Moreover, we study in detail the underlying geometry which is related to the notion of Poisson groupoid. Finally, we apply the previous construction to the formal derivation of the variational error for numerical integrators of forced Euler-Poincaré equations and the application of this theory to the derivation of geometric integrators for forced systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab8bb1</doi><tpages>3738</tpages><orcidid>https://orcid.org/0000-0001-6762-8909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2020-08, Vol.33 (8), p.3709-3738
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_ab8bb1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Euler-Poincaré equations
forced systems
geometric integration
variational integrators
title Variational order for forced Lagrangian systems II. Euler-Poincaré equations with forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20order%20for%20forced%20Lagrangian%20systems%20II.%20Euler-Poincar%C3%A9%20equations%20with%20forcing&rft.jtitle=Nonlinearity&rft.au=Mart%C3%ADn%20de%20Diego,%20D&rft.date=2020-08-01&rft.volume=33&rft.issue=8&rft.spage=3709&rft.epage=3738&rft.pages=3709-3738&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab8bb1&rft_dat=%3Ciop_cross%3Enonab8bb1%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true