Vanadium MXenes materials for next-generation energy storage devices
Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitr...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2023-06, Vol.34 (25), p.252001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | 252001 |
container_title | Nanotechnology |
container_volume | 34 |
creator | Sijuade, Ayomide Adeola Eze, Vincent Obiozo Arnett, Natalie Y Okoli, Okenwa I |
description | Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed. |
doi_str_mv | 10.1088/1361-6528/acc539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6528_acc539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800147374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-eec7062b61403fda84883d71c3848647d4b5e73866e1f8e4b819c8347a3272b33</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMo7vpx9yQ9Klg3adIkPcr6CSteVLyFNJ0uXbZNTVpx_3tTuu5JhIEZkt97zDyEzgi-JljKGaGcxDxN5Ewbk9JsD013T_toirNUxIxJNkFH3q8wJkQm5BBNKM8ozricott33eii6uvo-QMa8FGtO3CVXvuotC5q4LuLl-HD6a6yTTRMy03kO-v0EqICvioD_gQdlEEBp9t-jN7u717nj_Hi5eFpfrOIDRW4iwGMwDzJOWGYloWWTEpaCGJomDgTBctTEFRyDqSUwHJJMiMpE5omIskpPUYXo2_r7GcPvlN15Q2s17oB23uVyHAiE1SwgOIRNc5676BUratq7TaKYDVkp4ag1BCUGrMLkvOte5_XUOwEv2EF4GoEKtuqle1dE479z-_yD7zRjVWUqSQNlYR9VVuU9AdPS4Tb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800147374</pqid></control><display><type>article</type><title>Vanadium MXenes materials for next-generation energy storage devices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sijuade, Ayomide Adeola ; Eze, Vincent Obiozo ; Arnett, Natalie Y ; Okoli, Okenwa I</creator><creatorcontrib>Sijuade, Ayomide Adeola ; Eze, Vincent Obiozo ; Arnett, Natalie Y ; Okoli, Okenwa I</creatorcontrib><description>Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/acc539</identifier><identifier>PMID: 36930968</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>2D materials ; batteries ; MXene ; supercapacitors ; synthesis ; transition-metal carbide</subject><ispartof>Nanotechnology, 2023-06, Vol.34 (25), p.252001</ispartof><rights>2023 IOP Publishing Ltd</rights><rights>2023 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-eec7062b61403fda84883d71c3848647d4b5e73866e1f8e4b819c8347a3272b33</citedby><cites>FETCH-LOGICAL-c370t-eec7062b61403fda84883d71c3848647d4b5e73866e1f8e4b819c8347a3272b33</cites><orcidid>0000-0003-1918-6442 ; 0000-0002-0147-019X ; 0000-0003-1484-2922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/acc539/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36930968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sijuade, Ayomide Adeola</creatorcontrib><creatorcontrib>Eze, Vincent Obiozo</creatorcontrib><creatorcontrib>Arnett, Natalie Y</creatorcontrib><creatorcontrib>Okoli, Okenwa I</creatorcontrib><title>Vanadium MXenes materials for next-generation energy storage devices</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.</description><subject>2D materials</subject><subject>batteries</subject><subject>MXene</subject><subject>supercapacitors</subject><subject>synthesis</subject><subject>transition-metal carbide</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMo7vpx9yQ9Klg3adIkPcr6CSteVLyFNJ0uXbZNTVpx_3tTuu5JhIEZkt97zDyEzgi-JljKGaGcxDxN5Ewbk9JsD013T_toirNUxIxJNkFH3q8wJkQm5BBNKM8ozricott33eii6uvo-QMa8FGtO3CVXvuotC5q4LuLl-HD6a6yTTRMy03kO-v0EqICvioD_gQdlEEBp9t-jN7u717nj_Hi5eFpfrOIDRW4iwGMwDzJOWGYloWWTEpaCGJomDgTBctTEFRyDqSUwHJJMiMpE5omIskpPUYXo2_r7GcPvlN15Q2s17oB23uVyHAiE1SwgOIRNc5676BUratq7TaKYDVkp4ag1BCUGrMLkvOte5_XUOwEv2EF4GoEKtuqle1dE479z-_yD7zRjVWUqSQNlYR9VVuU9AdPS4Tb</recordid><startdate>20230618</startdate><enddate>20230618</enddate><creator>Sijuade, Ayomide Adeola</creator><creator>Eze, Vincent Obiozo</creator><creator>Arnett, Natalie Y</creator><creator>Okoli, Okenwa I</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1918-6442</orcidid><orcidid>https://orcid.org/0000-0002-0147-019X</orcidid><orcidid>https://orcid.org/0000-0003-1484-2922</orcidid></search><sort><creationdate>20230618</creationdate><title>Vanadium MXenes materials for next-generation energy storage devices</title><author>Sijuade, Ayomide Adeola ; Eze, Vincent Obiozo ; Arnett, Natalie Y ; Okoli, Okenwa I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-eec7062b61403fda84883d71c3848647d4b5e73866e1f8e4b819c8347a3272b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D materials</topic><topic>batteries</topic><topic>MXene</topic><topic>supercapacitors</topic><topic>synthesis</topic><topic>transition-metal carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sijuade, Ayomide Adeola</creatorcontrib><creatorcontrib>Eze, Vincent Obiozo</creatorcontrib><creatorcontrib>Arnett, Natalie Y</creatorcontrib><creatorcontrib>Okoli, Okenwa I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sijuade, Ayomide Adeola</au><au>Eze, Vincent Obiozo</au><au>Arnett, Natalie Y</au><au>Okoli, Okenwa I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanadium MXenes materials for next-generation energy storage devices</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2023-06-18</date><risdate>2023</risdate><volume>34</volume><issue>25</issue><spage>252001</spage><pages>252001-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36930968</pmid><doi>10.1088/1361-6528/acc539</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1918-6442</orcidid><orcidid>https://orcid.org/0000-0002-0147-019X</orcidid><orcidid>https://orcid.org/0000-0003-1484-2922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2023-06, Vol.34 (25), p.252001 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6528_acc539 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 2D materials batteries MXene supercapacitors synthesis transition-metal carbide |
title | Vanadium MXenes materials for next-generation energy storage devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanadium%20MXenes%20materials%20for%20next-generation%20energy%20storage%20devices&rft.jtitle=Nanotechnology&rft.au=Sijuade,%20Ayomide%20Adeola&rft.date=2023-06-18&rft.volume=34&rft.issue=25&rft.spage=252001&rft.pages=252001-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/acc539&rft_dat=%3Cproquest_iop_j%3E2800147374%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800147374&rft_id=info:pmid/36930968&rfr_iscdi=true |