Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon

We report a simple, scalable two-step method for direct-write laser fabrication of 3D, porous graphene-like carbon electrodes from polyimide films with integrated contact plugs to underlying metal layers (Au or Ni). Irradiation at high average CO 2 laser power (30 W) and low scan speed (∼18 mm s) −1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2022-10, Vol.33 (40), p.405204
Hauptverfasser: Murray, Richard, O’Neill, Orla, Vaughan, Eoghan, Iacopino, Daniela, Blake, Alan, Lyons, Colin, O’Connell, Dan, O’Brien, Joe, Quinn, Aidan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 40
container_start_page 405204
container_title Nanotechnology
container_volume 33
creator Murray, Richard
O’Neill, Orla
Vaughan, Eoghan
Iacopino, Daniela
Blake, Alan
Lyons, Colin
O’Connell, Dan
O’Brien, Joe
Quinn, Aidan J
description We report a simple, scalable two-step method for direct-write laser fabrication of 3D, porous graphene-like carbon electrodes from polyimide films with integrated contact plugs to underlying metal layers (Au or Ni). Irradiation at high average CO 2 laser power (30 W) and low scan speed (∼18 mm s) −1 leads to formation of ‘keyhole’ contact plugs through local ablation of polyimide (initial thickness 17 μ m) and graphitization of the plug perimeter wall. Top-surface laser-induced graphene (LIG) electrodes are then formed and connected to the plug by raster patterning at lower laser power (3.7 W) and higher scan speed (200 mm s) −1 . Sheet resistance data (71 ± 15 Ω sq.) −1 indicates formation of high-quality surface LIG, consistent with Raman data which yield sharp first- and second-order peaks. We have also demonstrated that high-quality LIG requires a minimum initial polyimide thickness. Capacitance data measured between surface LIG electrodes and the buried metal film indicate a polyimide layer of thickness ∼7 μ m remaining following laser processing. By contrast, laser graphitization of polyimide of initial thickness ∼8 μ m yielded devices with large sheet resistance (>1 kΩ sq.) −1 . Raman data also indicated significant disorder. Plug contact resistance values were calculated from analysis of transfer line measurement data for single- and multi-plug test structures. Contacts to buried nickel layers yielded lower plug resistances (1-plug: 158 ± 7 Ω , 4-plug: 31 ± 14 Ω) compared to contacts to buried gold (1-plug: 346 ± 37 Ω , 4-plug: 52 ± 3 Ω). Further reductions are expected for multi-plug structures with increased areal density. Proof-of-concept mm-scale LIG electrochemical devices with local contact plugs yielded rapid electron transfer kinetics (rate constant k 0  ∼ 0.017 cm s −1 ), comparable to values measured for exposed Au films ( k 0  ∼0.023 cm s) −1 . Our results highlight the potential for integration of LIG-based sensor electrodes with semiconductor or roll-to-roll manufacturing.
doi_str_mv 10.1088/1361-6528/ac7c7b
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6528_ac7c7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682259620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-22d0d072d2fead08e7d548d772026937fbb37f1a621303a6932afb5469c30e053</originalsourceid><addsrcrecordid>eNp9kMtLxDAQh4MouK7ePfaoYN1J0kd6lPUJC1704iWkeWjWNqlJivjf26XiSYRhBn58MzAfQqcYLjEwtsK0wnlVErYSspZ1u4cWv9E-WkBT1nlRsOIQHcW4BcCYEbxAL9c2aJnyz2CTzowPvUjWu8ybzLqkX4NIWmWtT8n3mfQuCZlilnzWiahDbp0a5QRM3PCmnc47-64zKULr3TE6MKKL-uRnLtHz7c3T-j7fPN49rK82uaSsSTkhChTURBGjhQKma1UWTNU1AVI1tDZtOzUsKoIpUDFFRJi2LKpGUtBQ0iU6m-8OwX-MOibe2yh11wmn_Rg5qRghZVMRmFCYURl8jEEbPgTbi_DFMfCdRr5zxnfO-KxxWrmYV6wf-NaPwU2__Ief_4E74TynlBcwVUmg4IMy9BuaTIJr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682259620</pqid></control><display><type>article</type><title>Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon</title><source>Institute of Physics Journals</source><creator>Murray, Richard ; O’Neill, Orla ; Vaughan, Eoghan ; Iacopino, Daniela ; Blake, Alan ; Lyons, Colin ; O’Connell, Dan ; O’Brien, Joe ; Quinn, Aidan J</creator><creatorcontrib>Murray, Richard ; O’Neill, Orla ; Vaughan, Eoghan ; Iacopino, Daniela ; Blake, Alan ; Lyons, Colin ; O’Connell, Dan ; O’Brien, Joe ; Quinn, Aidan J</creatorcontrib><description>We report a simple, scalable two-step method for direct-write laser fabrication of 3D, porous graphene-like carbon electrodes from polyimide films with integrated contact plugs to underlying metal layers (Au or Ni). Irradiation at high average CO 2 laser power (30 W) and low scan speed (∼18 mm s) −1 leads to formation of ‘keyhole’ contact plugs through local ablation of polyimide (initial thickness 17 μ m) and graphitization of the plug perimeter wall. Top-surface laser-induced graphene (LIG) electrodes are then formed and connected to the plug by raster patterning at lower laser power (3.7 W) and higher scan speed (200 mm s) −1 . Sheet resistance data (71 ± 15 Ω sq.) −1 indicates formation of high-quality surface LIG, consistent with Raman data which yield sharp first- and second-order peaks. We have also demonstrated that high-quality LIG requires a minimum initial polyimide thickness. Capacitance data measured between surface LIG electrodes and the buried metal film indicate a polyimide layer of thickness ∼7 μ m remaining following laser processing. By contrast, laser graphitization of polyimide of initial thickness ∼8 μ m yielded devices with large sheet resistance (&gt;1 kΩ sq.) −1 . Raman data also indicated significant disorder. Plug contact resistance values were calculated from analysis of transfer line measurement data for single- and multi-plug test structures. Contacts to buried nickel layers yielded lower plug resistances (1-plug: 158 ± 7 Ω , 4-plug: 31 ± 14 Ω) compared to contacts to buried gold (1-plug: 346 ± 37 Ω , 4-plug: 52 ± 3 Ω). Further reductions are expected for multi-plug structures with increased areal density. Proof-of-concept mm-scale LIG electrochemical devices with local contact plugs yielded rapid electron transfer kinetics (rate constant k 0  ∼ 0.017 cm s −1 ), comparable to values measured for exposed Au films ( k 0  ∼0.023 cm s) −1 . Our results highlight the potential for integration of LIG-based sensor electrodes with semiconductor or roll-to-roll manufacturing.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ac7c7b</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>additive manufacture ; contact resistance ; electrochemistry ; laser-induced graphene</subject><ispartof>Nanotechnology, 2022-10, Vol.33 (40), p.405204</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-22d0d072d2fead08e7d548d772026937fbb37f1a621303a6932afb5469c30e053</citedby><cites>FETCH-LOGICAL-c389t-22d0d072d2fead08e7d548d772026937fbb37f1a621303a6932afb5469c30e053</cites><orcidid>0000-0002-0300-4141 ; 0000-0003-1618-0176 ; 0000-0001-7961-4459 ; 0000-0002-9524-0204 ; 0000-0002-9382-6981 ; 0000-0003-4021-9990 ; 0000-0003-0676-5111 ; 0000-0003-2301-9401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ac7c7b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Murray, Richard</creatorcontrib><creatorcontrib>O’Neill, Orla</creatorcontrib><creatorcontrib>Vaughan, Eoghan</creatorcontrib><creatorcontrib>Iacopino, Daniela</creatorcontrib><creatorcontrib>Blake, Alan</creatorcontrib><creatorcontrib>Lyons, Colin</creatorcontrib><creatorcontrib>O’Connell, Dan</creatorcontrib><creatorcontrib>O’Brien, Joe</creatorcontrib><creatorcontrib>Quinn, Aidan J</creatorcontrib><title>Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>We report a simple, scalable two-step method for direct-write laser fabrication of 3D, porous graphene-like carbon electrodes from polyimide films with integrated contact plugs to underlying metal layers (Au or Ni). Irradiation at high average CO 2 laser power (30 W) and low scan speed (∼18 mm s) −1 leads to formation of ‘keyhole’ contact plugs through local ablation of polyimide (initial thickness 17 μ m) and graphitization of the plug perimeter wall. Top-surface laser-induced graphene (LIG) electrodes are then formed and connected to the plug by raster patterning at lower laser power (3.7 W) and higher scan speed (200 mm s) −1 . Sheet resistance data (71 ± 15 Ω sq.) −1 indicates formation of high-quality surface LIG, consistent with Raman data which yield sharp first- and second-order peaks. We have also demonstrated that high-quality LIG requires a minimum initial polyimide thickness. Capacitance data measured between surface LIG electrodes and the buried metal film indicate a polyimide layer of thickness ∼7 μ m remaining following laser processing. By contrast, laser graphitization of polyimide of initial thickness ∼8 μ m yielded devices with large sheet resistance (&gt;1 kΩ sq.) −1 . Raman data also indicated significant disorder. Plug contact resistance values were calculated from analysis of transfer line measurement data for single- and multi-plug test structures. Contacts to buried nickel layers yielded lower plug resistances (1-plug: 158 ± 7 Ω , 4-plug: 31 ± 14 Ω) compared to contacts to buried gold (1-plug: 346 ± 37 Ω , 4-plug: 52 ± 3 Ω). Further reductions are expected for multi-plug structures with increased areal density. Proof-of-concept mm-scale LIG electrochemical devices with local contact plugs yielded rapid electron transfer kinetics (rate constant k 0  ∼ 0.017 cm s −1 ), comparable to values measured for exposed Au films ( k 0  ∼0.023 cm s) −1 . Our results highlight the potential for integration of LIG-based sensor electrodes with semiconductor or roll-to-roll manufacturing.</description><subject>additive manufacture</subject><subject>contact resistance</subject><subject>electrochemistry</subject><subject>laser-induced graphene</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kMtLxDAQh4MouK7ePfaoYN1J0kd6lPUJC1704iWkeWjWNqlJivjf26XiSYRhBn58MzAfQqcYLjEwtsK0wnlVErYSspZ1u4cWv9E-WkBT1nlRsOIQHcW4BcCYEbxAL9c2aJnyz2CTzowPvUjWu8ybzLqkX4NIWmWtT8n3mfQuCZlilnzWiahDbp0a5QRM3PCmnc47-64zKULr3TE6MKKL-uRnLtHz7c3T-j7fPN49rK82uaSsSTkhChTURBGjhQKma1UWTNU1AVI1tDZtOzUsKoIpUDFFRJi2LKpGUtBQ0iU6m-8OwX-MOibe2yh11wmn_Rg5qRghZVMRmFCYURl8jEEbPgTbi_DFMfCdRr5zxnfO-KxxWrmYV6wf-NaPwU2__Ief_4E74TynlBcwVUmg4IMy9BuaTIJr</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Murray, Richard</creator><creator>O’Neill, Orla</creator><creator>Vaughan, Eoghan</creator><creator>Iacopino, Daniela</creator><creator>Blake, Alan</creator><creator>Lyons, Colin</creator><creator>O’Connell, Dan</creator><creator>O’Brien, Joe</creator><creator>Quinn, Aidan J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0300-4141</orcidid><orcidid>https://orcid.org/0000-0003-1618-0176</orcidid><orcidid>https://orcid.org/0000-0001-7961-4459</orcidid><orcidid>https://orcid.org/0000-0002-9524-0204</orcidid><orcidid>https://orcid.org/0000-0002-9382-6981</orcidid><orcidid>https://orcid.org/0000-0003-4021-9990</orcidid><orcidid>https://orcid.org/0000-0003-0676-5111</orcidid><orcidid>https://orcid.org/0000-0003-2301-9401</orcidid></search><sort><creationdate>20221001</creationdate><title>Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon</title><author>Murray, Richard ; O’Neill, Orla ; Vaughan, Eoghan ; Iacopino, Daniela ; Blake, Alan ; Lyons, Colin ; O’Connell, Dan ; O’Brien, Joe ; Quinn, Aidan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-22d0d072d2fead08e7d548d772026937fbb37f1a621303a6932afb5469c30e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive manufacture</topic><topic>contact resistance</topic><topic>electrochemistry</topic><topic>laser-induced graphene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Richard</creatorcontrib><creatorcontrib>O’Neill, Orla</creatorcontrib><creatorcontrib>Vaughan, Eoghan</creatorcontrib><creatorcontrib>Iacopino, Daniela</creatorcontrib><creatorcontrib>Blake, Alan</creatorcontrib><creatorcontrib>Lyons, Colin</creatorcontrib><creatorcontrib>O’Connell, Dan</creatorcontrib><creatorcontrib>O’Brien, Joe</creatorcontrib><creatorcontrib>Quinn, Aidan J</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Richard</au><au>O’Neill, Orla</au><au>Vaughan, Eoghan</au><au>Iacopino, Daniela</au><au>Blake, Alan</au><au>Lyons, Colin</au><au>O’Connell, Dan</au><au>O’Brien, Joe</au><au>Quinn, Aidan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>33</volume><issue>40</issue><spage>405204</spage><pages>405204-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>We report a simple, scalable two-step method for direct-write laser fabrication of 3D, porous graphene-like carbon electrodes from polyimide films with integrated contact plugs to underlying metal layers (Au or Ni). Irradiation at high average CO 2 laser power (30 W) and low scan speed (∼18 mm s) −1 leads to formation of ‘keyhole’ contact plugs through local ablation of polyimide (initial thickness 17 μ m) and graphitization of the plug perimeter wall. Top-surface laser-induced graphene (LIG) electrodes are then formed and connected to the plug by raster patterning at lower laser power (3.7 W) and higher scan speed (200 mm s) −1 . Sheet resistance data (71 ± 15 Ω sq.) −1 indicates formation of high-quality surface LIG, consistent with Raman data which yield sharp first- and second-order peaks. We have also demonstrated that high-quality LIG requires a minimum initial polyimide thickness. Capacitance data measured between surface LIG electrodes and the buried metal film indicate a polyimide layer of thickness ∼7 μ m remaining following laser processing. By contrast, laser graphitization of polyimide of initial thickness ∼8 μ m yielded devices with large sheet resistance (&gt;1 kΩ sq.) −1 . Raman data also indicated significant disorder. Plug contact resistance values were calculated from analysis of transfer line measurement data for single- and multi-plug test structures. Contacts to buried nickel layers yielded lower plug resistances (1-plug: 158 ± 7 Ω , 4-plug: 31 ± 14 Ω) compared to contacts to buried gold (1-plug: 346 ± 37 Ω , 4-plug: 52 ± 3 Ω). Further reductions are expected for multi-plug structures with increased areal density. Proof-of-concept mm-scale LIG electrochemical devices with local contact plugs yielded rapid electron transfer kinetics (rate constant k 0  ∼ 0.017 cm s −1 ), comparable to values measured for exposed Au films ( k 0  ∼0.023 cm s) −1 . Our results highlight the potential for integration of LIG-based sensor electrodes with semiconductor or roll-to-roll manufacturing.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ac7c7b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0300-4141</orcidid><orcidid>https://orcid.org/0000-0003-1618-0176</orcidid><orcidid>https://orcid.org/0000-0001-7961-4459</orcidid><orcidid>https://orcid.org/0000-0002-9524-0204</orcidid><orcidid>https://orcid.org/0000-0002-9382-6981</orcidid><orcidid>https://orcid.org/0000-0003-4021-9990</orcidid><orcidid>https://orcid.org/0000-0003-0676-5111</orcidid><orcidid>https://orcid.org/0000-0003-2301-9401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2022-10, Vol.33 (40), p.405204
issn 0957-4484
1361-6528
language eng
recordid cdi_iop_journals_10_1088_1361_6528_ac7c7b
source Institute of Physics Journals
subjects additive manufacture
contact resistance
electrochemistry
laser-induced graphene
title Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct-write%20formation%20of%20integrated%20bottom%20contacts%20to%20laser-induced%20graphene-like%20carbon&rft.jtitle=Nanotechnology&rft.au=Murray,%20Richard&rft.date=2022-10-01&rft.volume=33&rft.issue=40&rft.spage=405204&rft.pages=405204-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ac7c7b&rft_dat=%3Cproquest_iop_j%3E2682259620%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682259620&rft_id=info:pmid/&rfr_iscdi=true