Reversible engineering of topological insulator surface state conductivity through optical excitation
Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performanc...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2021-02, Vol.32 (17), p.17LT01-17LT01 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17LT01 |
---|---|
container_issue | 17 |
container_start_page | 17LT01 |
container_title | Nanotechnology |
container_volume | 32 |
creator | Xie, Faji Lian, Zhen Zhang, Shuai Wang, Tianmeng Miao, Shengnan Song, Zhiyong Ying, Zhe Pan, Xing-Chen Long, Mingsheng Zhang, Minhao Fei, Fucong Hu, Weida Yu, Geliang Song, Fengqi Kang, Ting-Ting Shi, Su-Fei |
description | Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics. |
doi_str_mv | 10.1088/1361-6528/abde01 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6528_abde01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492661688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</originalsourceid><addsrcrecordid>eNp1kF1LBCEUhiWK2j7uuwovC5rS0XGcy4i-YCGIvRd1zmzGrE7qRP37ZtvqqkAQ5Xnfw3kQOqbkghIpLykTtBBVKS-1aYHQLTT7_dpGM9JUdcG55HtoP6UXQiiVJd1Fe4yJkhDGZgie4A1icqYHDH7pPEB0folDh3MYQh-WzuoeO5_GXucQcRpjpy3glHUGbINvR5vdm8sfOD_HMC6fcRjyVwjerZsoF_wh2ul0n-Do-z5Ai9ubxfV9MX-8e7i-mheWM5ELK4xkwrCKSslryQwQKIFLQaFuOsJNxQxlTVfzWnApwWhNbGVLO73axrIDdLqpHWJ4HSFltXLJQt9rD2FMquRNKQQVUk4o2aA2hpQidGqIbqXjh6JErd2qtUi1Fqk2bqfIyXf7aFbQ_gZ-ZE7A2QZwYVAvYYx-2lV57YNipaL1dOYLQtXQdhN7_gf77-xPFj2TUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492661688</pqid></control><display><type>article</type><title>Reversible engineering of topological insulator surface state conductivity through optical excitation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xie, Faji ; Lian, Zhen ; Zhang, Shuai ; Wang, Tianmeng ; Miao, Shengnan ; Song, Zhiyong ; Ying, Zhe ; Pan, Xing-Chen ; Long, Mingsheng ; Zhang, Minhao ; Fei, Fucong ; Hu, Weida ; Yu, Geliang ; Song, Fengqi ; Kang, Ting-Ting ; Shi, Su-Fei</creator><creatorcontrib>Xie, Faji ; Lian, Zhen ; Zhang, Shuai ; Wang, Tianmeng ; Miao, Shengnan ; Song, Zhiyong ; Ying, Zhe ; Pan, Xing-Chen ; Long, Mingsheng ; Zhang, Minhao ; Fei, Fucong ; Hu, Weida ; Yu, Geliang ; Song, Fengqi ; Kang, Ting-Ting ; Shi, Su-Fei</creatorcontrib><description>Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abde01</identifier><identifier>PMID: 33620033</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Dirac fermion ; photodoping ; quantum Hall effect ; surface states ; topological insulator</subject><ispartof>Nanotechnology, 2021-02, Vol.32 (17), p.17LT01-17LT01</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</citedby><cites>FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</cites><orcidid>0000-0002-2354-0806 ; 0000-0001-5158-805X ; 0000-0002-4319-7865 ; 0000-0002-2916-3394 ; 0000-0001-5278-8969 ; 0000-0002-0169-7781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abde01/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33620033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Faji</creatorcontrib><creatorcontrib>Lian, Zhen</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Miao, Shengnan</creatorcontrib><creatorcontrib>Song, Zhiyong</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Pan, Xing-Chen</creatorcontrib><creatorcontrib>Long, Mingsheng</creatorcontrib><creatorcontrib>Zhang, Minhao</creatorcontrib><creatorcontrib>Fei, Fucong</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Yu, Geliang</creatorcontrib><creatorcontrib>Song, Fengqi</creatorcontrib><creatorcontrib>Kang, Ting-Ting</creatorcontrib><creatorcontrib>Shi, Su-Fei</creatorcontrib><title>Reversible engineering of topological insulator surface state conductivity through optical excitation</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.</description><subject>Dirac fermion</subject><subject>photodoping</subject><subject>quantum Hall effect</subject><subject>surface states</subject><subject>topological insulator</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LBCEUhiWK2j7uuwovC5rS0XGcy4i-YCGIvRd1zmzGrE7qRP37ZtvqqkAQ5Xnfw3kQOqbkghIpLykTtBBVKS-1aYHQLTT7_dpGM9JUdcG55HtoP6UXQiiVJd1Fe4yJkhDGZgie4A1icqYHDH7pPEB0folDh3MYQh-WzuoeO5_GXucQcRpjpy3glHUGbINvR5vdm8sfOD_HMC6fcRjyVwjerZsoF_wh2ul0n-Do-z5Ai9ubxfV9MX-8e7i-mheWM5ELK4xkwrCKSslryQwQKIFLQaFuOsJNxQxlTVfzWnApwWhNbGVLO73axrIDdLqpHWJ4HSFltXLJQt9rD2FMquRNKQQVUk4o2aA2hpQidGqIbqXjh6JErd2qtUi1Fqk2bqfIyXf7aFbQ_gZ-ZE7A2QZwYVAvYYx-2lV57YNipaL1dOYLQtXQdhN7_gf77-xPFj2TUw</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Xie, Faji</creator><creator>Lian, Zhen</creator><creator>Zhang, Shuai</creator><creator>Wang, Tianmeng</creator><creator>Miao, Shengnan</creator><creator>Song, Zhiyong</creator><creator>Ying, Zhe</creator><creator>Pan, Xing-Chen</creator><creator>Long, Mingsheng</creator><creator>Zhang, Minhao</creator><creator>Fei, Fucong</creator><creator>Hu, Weida</creator><creator>Yu, Geliang</creator><creator>Song, Fengqi</creator><creator>Kang, Ting-Ting</creator><creator>Shi, Su-Fei</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2354-0806</orcidid><orcidid>https://orcid.org/0000-0001-5158-805X</orcidid><orcidid>https://orcid.org/0000-0002-4319-7865</orcidid><orcidid>https://orcid.org/0000-0002-2916-3394</orcidid><orcidid>https://orcid.org/0000-0001-5278-8969</orcidid><orcidid>https://orcid.org/0000-0002-0169-7781</orcidid></search><sort><creationdate>20210205</creationdate><title>Reversible engineering of topological insulator surface state conductivity through optical excitation</title><author>Xie, Faji ; Lian, Zhen ; Zhang, Shuai ; Wang, Tianmeng ; Miao, Shengnan ; Song, Zhiyong ; Ying, Zhe ; Pan, Xing-Chen ; Long, Mingsheng ; Zhang, Minhao ; Fei, Fucong ; Hu, Weida ; Yu, Geliang ; Song, Fengqi ; Kang, Ting-Ting ; Shi, Su-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dirac fermion</topic><topic>photodoping</topic><topic>quantum Hall effect</topic><topic>surface states</topic><topic>topological insulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Faji</creatorcontrib><creatorcontrib>Lian, Zhen</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Miao, Shengnan</creatorcontrib><creatorcontrib>Song, Zhiyong</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Pan, Xing-Chen</creatorcontrib><creatorcontrib>Long, Mingsheng</creatorcontrib><creatorcontrib>Zhang, Minhao</creatorcontrib><creatorcontrib>Fei, Fucong</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Yu, Geliang</creatorcontrib><creatorcontrib>Song, Fengqi</creatorcontrib><creatorcontrib>Kang, Ting-Ting</creatorcontrib><creatorcontrib>Shi, Su-Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Faji</au><au>Lian, Zhen</au><au>Zhang, Shuai</au><au>Wang, Tianmeng</au><au>Miao, Shengnan</au><au>Song, Zhiyong</au><au>Ying, Zhe</au><au>Pan, Xing-Chen</au><au>Long, Mingsheng</au><au>Zhang, Minhao</au><au>Fei, Fucong</au><au>Hu, Weida</au><au>Yu, Geliang</au><au>Song, Fengqi</au><au>Kang, Ting-Ting</au><au>Shi, Su-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible engineering of topological insulator surface state conductivity through optical excitation</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-02-05</date><risdate>2021</risdate><volume>32</volume><issue>17</issue><spage>17LT01</spage><epage>17LT01</epage><pages>17LT01-17LT01</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33620033</pmid><doi>10.1088/1361-6528/abde01</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2354-0806</orcidid><orcidid>https://orcid.org/0000-0001-5158-805X</orcidid><orcidid>https://orcid.org/0000-0002-4319-7865</orcidid><orcidid>https://orcid.org/0000-0002-2916-3394</orcidid><orcidid>https://orcid.org/0000-0001-5278-8969</orcidid><orcidid>https://orcid.org/0000-0002-0169-7781</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2021-02, Vol.32 (17), p.17LT01-17LT01 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6528_abde01 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Dirac fermion photodoping quantum Hall effect surface states topological insulator |
title | Reversible engineering of topological insulator surface state conductivity through optical excitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20engineering%20of%20topological%20insulator%20surface%20state%20conductivity%20through%20optical%20excitation&rft.jtitle=Nanotechnology&rft.au=Xie,%20Faji&rft.date=2021-02-05&rft.volume=32&rft.issue=17&rft.spage=17LT01&rft.epage=17LT01&rft.pages=17LT01-17LT01&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abde01&rft_dat=%3Cproquest_iop_j%3E2492661688%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492661688&rft_id=info:pmid/33620033&rfr_iscdi=true |