Reversible engineering of topological insulator surface state conductivity through optical excitation

Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2021-02, Vol.32 (17), p.17LT01-17LT01
Hauptverfasser: Xie, Faji, Lian, Zhen, Zhang, Shuai, Wang, Tianmeng, Miao, Shengnan, Song, Zhiyong, Ying, Zhe, Pan, Xing-Chen, Long, Mingsheng, Zhang, Minhao, Fei, Fucong, Hu, Weida, Yu, Geliang, Song, Fengqi, Kang, Ting-Ting, Shi, Su-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17LT01
container_issue 17
container_start_page 17LT01
container_title Nanotechnology
container_volume 32
creator Xie, Faji
Lian, Zhen
Zhang, Shuai
Wang, Tianmeng
Miao, Shengnan
Song, Zhiyong
Ying, Zhe
Pan, Xing-Chen
Long, Mingsheng
Zhang, Minhao
Fei, Fucong
Hu, Weida
Yu, Geliang
Song, Fengqi
Kang, Ting-Ting
Shi, Su-Fei
description Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.
doi_str_mv 10.1088/1361-6528/abde01
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6528_abde01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492661688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</originalsourceid><addsrcrecordid>eNp1kF1LBCEUhiWK2j7uuwovC5rS0XGcy4i-YCGIvRd1zmzGrE7qRP37ZtvqqkAQ5Xnfw3kQOqbkghIpLykTtBBVKS-1aYHQLTT7_dpGM9JUdcG55HtoP6UXQiiVJd1Fe4yJkhDGZgie4A1icqYHDH7pPEB0folDh3MYQh-WzuoeO5_GXucQcRpjpy3glHUGbINvR5vdm8sfOD_HMC6fcRjyVwjerZsoF_wh2ul0n-Do-z5Ai9ubxfV9MX-8e7i-mheWM5ELK4xkwrCKSslryQwQKIFLQaFuOsJNxQxlTVfzWnApwWhNbGVLO73axrIDdLqpHWJ4HSFltXLJQt9rD2FMquRNKQQVUk4o2aA2hpQidGqIbqXjh6JErd2qtUi1Fqk2bqfIyXf7aFbQ_gZ-ZE7A2QZwYVAvYYx-2lV57YNipaL1dOYLQtXQdhN7_gf77-xPFj2TUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492661688</pqid></control><display><type>article</type><title>Reversible engineering of topological insulator surface state conductivity through optical excitation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xie, Faji ; Lian, Zhen ; Zhang, Shuai ; Wang, Tianmeng ; Miao, Shengnan ; Song, Zhiyong ; Ying, Zhe ; Pan, Xing-Chen ; Long, Mingsheng ; Zhang, Minhao ; Fei, Fucong ; Hu, Weida ; Yu, Geliang ; Song, Fengqi ; Kang, Ting-Ting ; Shi, Su-Fei</creator><creatorcontrib>Xie, Faji ; Lian, Zhen ; Zhang, Shuai ; Wang, Tianmeng ; Miao, Shengnan ; Song, Zhiyong ; Ying, Zhe ; Pan, Xing-Chen ; Long, Mingsheng ; Zhang, Minhao ; Fei, Fucong ; Hu, Weida ; Yu, Geliang ; Song, Fengqi ; Kang, Ting-Ting ; Shi, Su-Fei</creatorcontrib><description>Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abde01</identifier><identifier>PMID: 33620033</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Dirac fermion ; photodoping ; quantum Hall effect ; surface states ; topological insulator</subject><ispartof>Nanotechnology, 2021-02, Vol.32 (17), p.17LT01-17LT01</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</citedby><cites>FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</cites><orcidid>0000-0002-2354-0806 ; 0000-0001-5158-805X ; 0000-0002-4319-7865 ; 0000-0002-2916-3394 ; 0000-0001-5278-8969 ; 0000-0002-0169-7781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abde01/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33620033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Faji</creatorcontrib><creatorcontrib>Lian, Zhen</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Miao, Shengnan</creatorcontrib><creatorcontrib>Song, Zhiyong</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Pan, Xing-Chen</creatorcontrib><creatorcontrib>Long, Mingsheng</creatorcontrib><creatorcontrib>Zhang, Minhao</creatorcontrib><creatorcontrib>Fei, Fucong</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Yu, Geliang</creatorcontrib><creatorcontrib>Song, Fengqi</creatorcontrib><creatorcontrib>Kang, Ting-Ting</creatorcontrib><creatorcontrib>Shi, Su-Fei</creatorcontrib><title>Reversible engineering of topological insulator surface state conductivity through optical excitation</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.</description><subject>Dirac fermion</subject><subject>photodoping</subject><subject>quantum Hall effect</subject><subject>surface states</subject><subject>topological insulator</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LBCEUhiWK2j7uuwovC5rS0XGcy4i-YCGIvRd1zmzGrE7qRP37ZtvqqkAQ5Xnfw3kQOqbkghIpLykTtBBVKS-1aYHQLTT7_dpGM9JUdcG55HtoP6UXQiiVJd1Fe4yJkhDGZgie4A1icqYHDH7pPEB0folDh3MYQh-WzuoeO5_GXucQcRpjpy3glHUGbINvR5vdm8sfOD_HMC6fcRjyVwjerZsoF_wh2ul0n-Do-z5Ai9ubxfV9MX-8e7i-mheWM5ELK4xkwrCKSslryQwQKIFLQaFuOsJNxQxlTVfzWnApwWhNbGVLO73axrIDdLqpHWJ4HSFltXLJQt9rD2FMquRNKQQVUk4o2aA2hpQidGqIbqXjh6JErd2qtUi1Fqk2bqfIyXf7aFbQ_gZ-ZE7A2QZwYVAvYYx-2lV57YNipaL1dOYLQtXQdhN7_gf77-xPFj2TUw</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Xie, Faji</creator><creator>Lian, Zhen</creator><creator>Zhang, Shuai</creator><creator>Wang, Tianmeng</creator><creator>Miao, Shengnan</creator><creator>Song, Zhiyong</creator><creator>Ying, Zhe</creator><creator>Pan, Xing-Chen</creator><creator>Long, Mingsheng</creator><creator>Zhang, Minhao</creator><creator>Fei, Fucong</creator><creator>Hu, Weida</creator><creator>Yu, Geliang</creator><creator>Song, Fengqi</creator><creator>Kang, Ting-Ting</creator><creator>Shi, Su-Fei</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2354-0806</orcidid><orcidid>https://orcid.org/0000-0001-5158-805X</orcidid><orcidid>https://orcid.org/0000-0002-4319-7865</orcidid><orcidid>https://orcid.org/0000-0002-2916-3394</orcidid><orcidid>https://orcid.org/0000-0001-5278-8969</orcidid><orcidid>https://orcid.org/0000-0002-0169-7781</orcidid></search><sort><creationdate>20210205</creationdate><title>Reversible engineering of topological insulator surface state conductivity through optical excitation</title><author>Xie, Faji ; Lian, Zhen ; Zhang, Shuai ; Wang, Tianmeng ; Miao, Shengnan ; Song, Zhiyong ; Ying, Zhe ; Pan, Xing-Chen ; Long, Mingsheng ; Zhang, Minhao ; Fei, Fucong ; Hu, Weida ; Yu, Geliang ; Song, Fengqi ; Kang, Ting-Ting ; Shi, Su-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-c6b836b351884783be0e2e4861e79f04b53b139f7476488ebaa0c5c2c648d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dirac fermion</topic><topic>photodoping</topic><topic>quantum Hall effect</topic><topic>surface states</topic><topic>topological insulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Faji</creatorcontrib><creatorcontrib>Lian, Zhen</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Miao, Shengnan</creatorcontrib><creatorcontrib>Song, Zhiyong</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Pan, Xing-Chen</creatorcontrib><creatorcontrib>Long, Mingsheng</creatorcontrib><creatorcontrib>Zhang, Minhao</creatorcontrib><creatorcontrib>Fei, Fucong</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Yu, Geliang</creatorcontrib><creatorcontrib>Song, Fengqi</creatorcontrib><creatorcontrib>Kang, Ting-Ting</creatorcontrib><creatorcontrib>Shi, Su-Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Faji</au><au>Lian, Zhen</au><au>Zhang, Shuai</au><au>Wang, Tianmeng</au><au>Miao, Shengnan</au><au>Song, Zhiyong</au><au>Ying, Zhe</au><au>Pan, Xing-Chen</au><au>Long, Mingsheng</au><au>Zhang, Minhao</au><au>Fei, Fucong</au><au>Hu, Weida</au><au>Yu, Geliang</au><au>Song, Fengqi</au><au>Kang, Ting-Ting</au><au>Shi, Su-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible engineering of topological insulator surface state conductivity through optical excitation</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-02-05</date><risdate>2021</risdate><volume>32</volume><issue>17</issue><spage>17LT01</spage><epage>17LT01</epage><pages>17LT01-17LT01</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33620033</pmid><doi>10.1088/1361-6528/abde01</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2354-0806</orcidid><orcidid>https://orcid.org/0000-0001-5158-805X</orcidid><orcidid>https://orcid.org/0000-0002-4319-7865</orcidid><orcidid>https://orcid.org/0000-0002-2916-3394</orcidid><orcidid>https://orcid.org/0000-0001-5278-8969</orcidid><orcidid>https://orcid.org/0000-0002-0169-7781</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2021-02, Vol.32 (17), p.17LT01-17LT01
issn 0957-4484
1361-6528
language eng
recordid cdi_iop_journals_10_1088_1361_6528_abde01
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Dirac fermion
photodoping
quantum Hall effect
surface states
topological insulator
title Reversible engineering of topological insulator surface state conductivity through optical excitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20engineering%20of%20topological%20insulator%20surface%20state%20conductivity%20through%20optical%20excitation&rft.jtitle=Nanotechnology&rft.au=Xie,%20Faji&rft.date=2021-02-05&rft.volume=32&rft.issue=17&rft.spage=17LT01&rft.epage=17LT01&rft.pages=17LT01-17LT01&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abde01&rft_dat=%3Cproquest_iop_j%3E2492661688%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492661688&rft_id=info:pmid/33620033&rfr_iscdi=true