Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches

This review is concerned with the leading methods of bottom-up material preparation for thermal-to-electrical energy interconversion. The advantages, capabilities, and challenges from a material synthesis perspective are surveyed and the methods are discussed with respect to their potential for impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2018-10, Vol.29 (43), p.432001-432001
Hauptverfasser: Yazdani, Sajad, Pettes, Michael Thompson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432001
container_issue 43
container_start_page 432001
container_title Nanotechnology
container_volume 29
creator Yazdani, Sajad
Pettes, Michael Thompson
description This review is concerned with the leading methods of bottom-up material preparation for thermal-to-electrical energy interconversion. The advantages, capabilities, and challenges from a material synthesis perspective are surveyed and the methods are discussed with respect to their potential for improvement (or possibly deterioration) of application-relevant transport properties. Solution chemistry-based synthesis approaches are re-assessed from the perspective of thermoelectric applications based on reported procedures for nanowire, quantum dot, mesoporous, hydro/solvothermal, and microwave-assisted syntheses as these techniques can effectively be exploited for industrial mass production. In terms of energy conversion efficiency, the benefit of self-assembly can occur from three paths: suppressing thermal conductivity, increasing thermopower, and boosting electrical conductivity. An ideal thermoelectric material gains from all three improvements simultaneously. Most bottom-up materials have been shown to exhibit very low values of thermal conductivity compared to their top-down (solid-state) counterparts, although the main challenge lies in improving their poor electrical properties. Recent developments in the field discussed in this review reveal that the traditional view of bottom-up thermoelectrics as inferior materials suffering from poor performance is not appropriate. Thermopower enhancement due to size and energy filtering effects, electrical conductivity enhancement, and thermal conductivity reduction mechanisms inherent in bottom-up nanoscale self-assembly syntheses are indicative of the impact that these techniques will play in future thermoelectric applications.
doi_str_mv 10.1088/1361-6528/aad673
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6528_aad673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078587690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-b1e7ca3be31247295bb3abce149ac8857118f46ed2d73e2380f2488bce7483b63</originalsourceid><addsrcrecordid>eNp9kUtLxDAURoMozji6dyXFlYLVvNqk7mTwBaIbXbkISXrLVNqmJq0y_94MVVciBAKXcz8-zkXokOBzgqW8ICwnaZ5ReaF1mQu2hea_o200x0UmUs4ln6G9EN4wJkRSsotmDOOMkqKYo9dH3blgdQNJgKZKdQjQmmaduCoZVuBbBw3Ywdc2afUAvtZNuEx04uGjhs8NZVfQ1mHw69ToAGWi-947HadhH-1UEYeD73-BXm6un5d36cPT7f3y6iG1Gc6G1BAQVjMDjFAuaJEZw7SxQHihrZSZiK0rnkNJS8GAMokryqWMhOCSmZwt0PGU68JQq2DrAezKuq6LxRXheSZFEaGTCYrt3kcIg4qtLTSN7sCNQVEsZATzAkcUT6j1LgQPlep93Wq_VgSrjXe1kaw2ktXkPa4cfaePpoXyd-FHdATOJqB2vXpzo--ikf_yTv_Au3grRQvFWXw0nlP1ZcW-AOVymhU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078587690</pqid></control><display><type>article</type><title>Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yazdani, Sajad ; Pettes, Michael Thompson</creator><creatorcontrib>Yazdani, Sajad ; Pettes, Michael Thompson ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>This review is concerned with the leading methods of bottom-up material preparation for thermal-to-electrical energy interconversion. The advantages, capabilities, and challenges from a material synthesis perspective are surveyed and the methods are discussed with respect to their potential for improvement (or possibly deterioration) of application-relevant transport properties. Solution chemistry-based synthesis approaches are re-assessed from the perspective of thermoelectric applications based on reported procedures for nanowire, quantum dot, mesoporous, hydro/solvothermal, and microwave-assisted syntheses as these techniques can effectively be exploited for industrial mass production. In terms of energy conversion efficiency, the benefit of self-assembly can occur from three paths: suppressing thermal conductivity, increasing thermopower, and boosting electrical conductivity. An ideal thermoelectric material gains from all three improvements simultaneously. Most bottom-up materials have been shown to exhibit very low values of thermal conductivity compared to their top-down (solid-state) counterparts, although the main challenge lies in improving their poor electrical properties. Recent developments in the field discussed in this review reveal that the traditional view of bottom-up thermoelectrics as inferior materials suffering from poor performance is not appropriate. Thermopower enhancement due to size and energy filtering effects, electrical conductivity enhancement, and thermal conductivity reduction mechanisms inherent in bottom-up nanoscale self-assembly syntheses are indicative of the impact that these techniques will play in future thermoelectric applications.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aad673</identifier><identifier>PMID: 30052199</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>30 DIRECT ENERGY CONVERSION ; bottom-up ; MATERIALS SCIENCE ; mesoporous ; NANOSCIENCE AND NANOTECHNOLOGY ; nanowires ; quantum dots ; self-assembly ; thermal conductivity ; thermoelectrics</subject><ispartof>Nanotechnology, 2018-10, Vol.29 (43), p.432001-432001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-b1e7ca3be31247295bb3abce149ac8857118f46ed2d73e2380f2488bce7483b63</citedby><cites>FETCH-LOGICAL-c505t-b1e7ca3be31247295bb3abce149ac8857118f46ed2d73e2380f2488bce7483b63</cites><orcidid>0000-0001-6862-6841 ; 0000000168626841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/aad673/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30052199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1465879$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdani, Sajad</creatorcontrib><creatorcontrib>Pettes, Michael Thompson</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>This review is concerned with the leading methods of bottom-up material preparation for thermal-to-electrical energy interconversion. The advantages, capabilities, and challenges from a material synthesis perspective are surveyed and the methods are discussed with respect to their potential for improvement (or possibly deterioration) of application-relevant transport properties. Solution chemistry-based synthesis approaches are re-assessed from the perspective of thermoelectric applications based on reported procedures for nanowire, quantum dot, mesoporous, hydro/solvothermal, and microwave-assisted syntheses as these techniques can effectively be exploited for industrial mass production. In terms of energy conversion efficiency, the benefit of self-assembly can occur from three paths: suppressing thermal conductivity, increasing thermopower, and boosting electrical conductivity. An ideal thermoelectric material gains from all three improvements simultaneously. Most bottom-up materials have been shown to exhibit very low values of thermal conductivity compared to their top-down (solid-state) counterparts, although the main challenge lies in improving their poor electrical properties. Recent developments in the field discussed in this review reveal that the traditional view of bottom-up thermoelectrics as inferior materials suffering from poor performance is not appropriate. Thermopower enhancement due to size and energy filtering effects, electrical conductivity enhancement, and thermal conductivity reduction mechanisms inherent in bottom-up nanoscale self-assembly syntheses are indicative of the impact that these techniques will play in future thermoelectric applications.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>bottom-up</subject><subject>MATERIALS SCIENCE</subject><subject>mesoporous</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>nanowires</subject><subject>quantum dots</subject><subject>self-assembly</subject><subject>thermal conductivity</subject><subject>thermoelectrics</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kUtLxDAURoMozji6dyXFlYLVvNqk7mTwBaIbXbkISXrLVNqmJq0y_94MVVciBAKXcz8-zkXokOBzgqW8ICwnaZ5ReaF1mQu2hea_o200x0UmUs4ln6G9EN4wJkRSsotmDOOMkqKYo9dH3blgdQNJgKZKdQjQmmaduCoZVuBbBw3Ywdc2afUAvtZNuEx04uGjhs8NZVfQ1mHw69ToAGWi-947HadhH-1UEYeD73-BXm6un5d36cPT7f3y6iG1Gc6G1BAQVjMDjFAuaJEZw7SxQHihrZSZiK0rnkNJS8GAMokryqWMhOCSmZwt0PGU68JQq2DrAezKuq6LxRXheSZFEaGTCYrt3kcIg4qtLTSN7sCNQVEsZATzAkcUT6j1LgQPlep93Wq_VgSrjXe1kaw2ktXkPa4cfaePpoXyd-FHdATOJqB2vXpzo--ikf_yTv_Au3grRQvFWXw0nlP1ZcW-AOVymhU</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Yazdani, Sajad</creator><creator>Pettes, Michael Thompson</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6862-6841</orcidid><orcidid>https://orcid.org/0000000168626841</orcidid></search><sort><creationdate>20181026</creationdate><title>Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches</title><author>Yazdani, Sajad ; Pettes, Michael Thompson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-b1e7ca3be31247295bb3abce149ac8857118f46ed2d73e2380f2488bce7483b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>bottom-up</topic><topic>MATERIALS SCIENCE</topic><topic>mesoporous</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>nanowires</topic><topic>quantum dots</topic><topic>self-assembly</topic><topic>thermal conductivity</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Sajad</creatorcontrib><creatorcontrib>Pettes, Michael Thompson</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdani, Sajad</au><au>Pettes, Michael Thompson</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2018-10-26</date><risdate>2018</risdate><volume>29</volume><issue>43</issue><spage>432001</spage><epage>432001</epage><pages>432001-432001</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>This review is concerned with the leading methods of bottom-up material preparation for thermal-to-electrical energy interconversion. The advantages, capabilities, and challenges from a material synthesis perspective are surveyed and the methods are discussed with respect to their potential for improvement (or possibly deterioration) of application-relevant transport properties. Solution chemistry-based synthesis approaches are re-assessed from the perspective of thermoelectric applications based on reported procedures for nanowire, quantum dot, mesoporous, hydro/solvothermal, and microwave-assisted syntheses as these techniques can effectively be exploited for industrial mass production. In terms of energy conversion efficiency, the benefit of self-assembly can occur from three paths: suppressing thermal conductivity, increasing thermopower, and boosting electrical conductivity. An ideal thermoelectric material gains from all three improvements simultaneously. Most bottom-up materials have been shown to exhibit very low values of thermal conductivity compared to their top-down (solid-state) counterparts, although the main challenge lies in improving their poor electrical properties. Recent developments in the field discussed in this review reveal that the traditional view of bottom-up thermoelectrics as inferior materials suffering from poor performance is not appropriate. Thermopower enhancement due to size and energy filtering effects, electrical conductivity enhancement, and thermal conductivity reduction mechanisms inherent in bottom-up nanoscale self-assembly syntheses are indicative of the impact that these techniques will play in future thermoelectric applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30052199</pmid><doi>10.1088/1361-6528/aad673</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0001-6862-6841</orcidid><orcidid>https://orcid.org/0000000168626841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2018-10, Vol.29 (43), p.432001-432001
issn 0957-4484
1361-6528
language eng
recordid cdi_iop_journals_10_1088_1361_6528_aad673
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 30 DIRECT ENERGY CONVERSION
bottom-up
MATERIALS SCIENCE
mesoporous
NANOSCIENCE AND NANOTECHNOLOGY
nanowires
quantum dots
self-assembly
thermal conductivity
thermoelectrics
title Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20self-assembly%20of%20thermoelectric%20materials:%20a%20review%20of%20chemistry-based%20approaches&rft.jtitle=Nanotechnology&rft.au=Yazdani,%20Sajad&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2018-10-26&rft.volume=29&rft.issue=43&rft.spage=432001&rft.epage=432001&rft.pages=432001-432001&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/aad673&rft_dat=%3Cproquest_iop_j%3E2078587690%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078587690&rft_id=info:pmid/30052199&rfr_iscdi=true