Effect of high carbon incorporation in Co substrates on the epitaxy of hexagonal boron nitride/graphene heterostructures

We carried out a systematic study of hexagonal boron nitride/graphene (h-BN/G) heterostructure growth by introducing high incorporation of a carbon (C) source on a heated cobalt (Co) foil substrate followed by boron and nitrogen sources in a molecular beam epitaxy system. With the increase of C inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2018-01, Vol.29 (3), p.035602-035602
Hauptverfasser: Khanaki, Alireza, Tian, Hao, Xu, Zhongguang, Zheng, Renjing, He, Yanwei, Cui, Zhenjun, Yang, Jingchuan, Liu, Jianlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We carried out a systematic study of hexagonal boron nitride/graphene (h-BN/G) heterostructure growth by introducing high incorporation of a carbon (C) source on a heated cobalt (Co) foil substrate followed by boron and nitrogen sources in a molecular beam epitaxy system. With the increase of C incorporation in Co, three distinct regions of h-BN/G heterostructures were observed from region (1) where the C saturation was not attained at the growth temperature (900 °C) and G was grown only by precipitation during the cooling process to form a 'G network' underneath the h-BN film; to region (2) where the Co substrate was just saturated by C atoms at the growth temperature and a part of G growth occurs isothermally to form G islands and another part by precipitation, resulting in a non-uniform h-BN/G film; and to region (3) where a continuous layered G structure was formed at the growth temperature and precipitated C atoms added additional G layers to the system, leading to a uniform h-BN/G film. It is also found that in all three h-BN/G heterostructure growth regions, a 3 h h-BN growth at 900 °C led to h-BN film with a thickness of 1-2 nm, regardless of the underneath G layers' thickness or morphology. Growth time and growth temperature effects have been also studied.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/aa9c58