First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects

First-principles molecular dynamics (FPMD) simulations were applied for analyzing structural evolutions around the paraelectric-ferroelectric phase transition temperature in the perovskite-type cadmium titanate, CdTiO3. Since the phase transition is reported to occur at the low temperature around 80...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2024-11, Vol.36 (44), p.445404
Hauptverfasser: Kanayama, Kansei, Toyoura, Kazuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 44
container_start_page 445404
container_title Journal of physics. Condensed matter
container_volume 36
creator Kanayama, Kansei
Toyoura, Kazuaki
description First-principles molecular dynamics (FPMD) simulations were applied for analyzing structural evolutions around the paraelectric-ferroelectric phase transition temperature in the perovskite-type cadmium titanate, CdTiO3. Since the phase transition is reported to occur at the low temperature around 80 K, the quantum thermal bath (QTB) method was utilized in this study, which incorporates the nuclear quantum effects (NQEs). The structural evolutions in the QTB-FPMD simulations are in reasonable agreement with the experimental results, by contrast in the conventional FPMD simulations using the classical thermal bath (CTB-FPMD). Especially, the non-linear thermal expansion of lattice constants around the phase transition temperature was well reproduced in the QTB-FPMD with the NQEs. Thus, the NQEs are of importance in phase transitions at low temperatures, particularly below the room temperature, and the QTB is useful in that it incorporates the NQEs in MD simulations with low computational costs comparable to the conventional CTB.
doi_str_mv 10.1088/1361-648X/ad68b0
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ad68b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086061390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-10f98ac338b13ed0de01f8593a8506fce79211aa06d7d62d049989533c43c32b3</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhoMo9lrdu5Ls7MJpT24yuZmlFNsKBTcK7kImH5qSj2mSAe8f6O82l1u7ksKBA4fnfeE8CL0ncE5AiAtCORk4Ez8vlOFihhdo83R6iTYwjXQQk2An6E2tdwDABGWv0QmdYMfYJDbo4cqX2oal-KT9EmzFta1mj7PDKach-GRVwe23LVEFbP8sKlWfE_YJa2WiXyNuvqmkmsXzHsccrF5Dj5h9UtHr2kmdy5KLaj79wmnV4dB4v6rUetg6Z3Wrb9Erp0K17x73Kfpx9eX75c1w--366-Xn20FvR9IGAm4SSlMqZkKtAWOBODFOVIkRuNN2N20JUQq42Rm-NcCmSXQJVDOq6Xamp-js2LuUfL_a2mT0VdsQVLJ5rZKC4MBJ99NROKK65FqLdbJLiqrsJQF5sC8PquVBtTza75EPj-3rHK15CvzT3YFPR8DnRd7ltaT-7HN9H_-D6ygpl4z1GRkwuRhH_wI0b56q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086061390</pqid></control><display><type>article</type><title>First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kanayama, Kansei ; Toyoura, Kazuaki</creator><creatorcontrib>Kanayama, Kansei ; Toyoura, Kazuaki</creatorcontrib><description>First-principles molecular dynamics (FPMD) simulations were applied for analyzing structural evolutions around the paraelectric-ferroelectric phase transition temperature in the perovskite-type cadmium titanate, CdTiO3. Since the phase transition is reported to occur at the low temperature around 80 K, the quantum thermal bath (QTB) method was utilized in this study, which incorporates the nuclear quantum effects (NQEs). The structural evolutions in the QTB-FPMD simulations are in reasonable agreement with the experimental results, by contrast in the conventional FPMD simulations using the classical thermal bath (CTB-FPMD). Especially, the non-linear thermal expansion of lattice constants around the phase transition temperature was well reproduced in the QTB-FPMD with the NQEs. Thus, the NQEs are of importance in phase transitions at low temperatures, particularly below the room temperature, and the QTB is useful in that it incorporates the NQEs in MD simulations with low computational costs comparable to the conventional CTB.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad68b0</identifier><identifier>PMID: 39074498</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>first-principles calculations ; molecular dynamics ; non-linear thermal expansion ; paraelectric-ferroelectric phase transitions ; perovskites ; quantum thermal bath</subject><ispartof>Journal of physics. Condensed matter, 2024-11, Vol.36 (44), p.445404</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-10f98ac338b13ed0de01f8593a8506fce79211aa06d7d62d049989533c43c32b3</cites><orcidid>0000-0001-8964-0511 ; 0000-0002-3047-1909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ad68b0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanayama, Kansei</creatorcontrib><creatorcontrib>Toyoura, Kazuaki</creatorcontrib><title>First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>First-principles molecular dynamics (FPMD) simulations were applied for analyzing structural evolutions around the paraelectric-ferroelectric phase transition temperature in the perovskite-type cadmium titanate, CdTiO3. Since the phase transition is reported to occur at the low temperature around 80 K, the quantum thermal bath (QTB) method was utilized in this study, which incorporates the nuclear quantum effects (NQEs). The structural evolutions in the QTB-FPMD simulations are in reasonable agreement with the experimental results, by contrast in the conventional FPMD simulations using the classical thermal bath (CTB-FPMD). Especially, the non-linear thermal expansion of lattice constants around the phase transition temperature was well reproduced in the QTB-FPMD with the NQEs. Thus, the NQEs are of importance in phase transitions at low temperatures, particularly below the room temperature, and the QTB is useful in that it incorporates the NQEs in MD simulations with low computational costs comparable to the conventional CTB.</description><subject>first-principles calculations</subject><subject>molecular dynamics</subject><subject>non-linear thermal expansion</subject><subject>paraelectric-ferroelectric phase transitions</subject><subject>perovskites</subject><subject>quantum thermal bath</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFTEUhoMo9lrdu5Ls7MJpT24yuZmlFNsKBTcK7kImH5qSj2mSAe8f6O82l1u7ksKBA4fnfeE8CL0ncE5AiAtCORk4Ez8vlOFihhdo83R6iTYwjXQQk2An6E2tdwDABGWv0QmdYMfYJDbo4cqX2oal-KT9EmzFta1mj7PDKach-GRVwe23LVEFbP8sKlWfE_YJa2WiXyNuvqmkmsXzHsccrF5Dj5h9UtHr2kmdy5KLaj79wmnV4dB4v6rUetg6Z3Wrb9Erp0K17x73Kfpx9eX75c1w--366-Xn20FvR9IGAm4SSlMqZkKtAWOBODFOVIkRuNN2N20JUQq42Rm-NcCmSXQJVDOq6Xamp-js2LuUfL_a2mT0VdsQVLJ5rZKC4MBJ99NROKK65FqLdbJLiqrsJQF5sC8PquVBtTza75EPj-3rHK15CvzT3YFPR8DnRd7ltaT-7HN9H_-D6ygpl4z1GRkwuRhH_wI0b56q</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Kanayama, Kansei</creator><creator>Toyoura, Kazuaki</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8964-0511</orcidid><orcidid>https://orcid.org/0000-0002-3047-1909</orcidid></search><sort><creationdate>20241106</creationdate><title>First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects</title><author>Kanayama, Kansei ; Toyoura, Kazuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-10f98ac338b13ed0de01f8593a8506fce79211aa06d7d62d049989533c43c32b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>first-principles calculations</topic><topic>molecular dynamics</topic><topic>non-linear thermal expansion</topic><topic>paraelectric-ferroelectric phase transitions</topic><topic>perovskites</topic><topic>quantum thermal bath</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanayama, Kansei</creatorcontrib><creatorcontrib>Toyoura, Kazuaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanayama, Kansei</au><au>Toyoura, Kazuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>36</volume><issue>44</issue><spage>445404</spage><pages>445404-</pages><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>First-principles molecular dynamics (FPMD) simulations were applied for analyzing structural evolutions around the paraelectric-ferroelectric phase transition temperature in the perovskite-type cadmium titanate, CdTiO3. Since the phase transition is reported to occur at the low temperature around 80 K, the quantum thermal bath (QTB) method was utilized in this study, which incorporates the nuclear quantum effects (NQEs). The structural evolutions in the QTB-FPMD simulations are in reasonable agreement with the experimental results, by contrast in the conventional FPMD simulations using the classical thermal bath (CTB-FPMD). Especially, the non-linear thermal expansion of lattice constants around the phase transition temperature was well reproduced in the QTB-FPMD with the NQEs. Thus, the NQEs are of importance in phase transitions at low temperatures, particularly below the room temperature, and the QTB is useful in that it incorporates the NQEs in MD simulations with low computational costs comparable to the conventional CTB.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39074498</pmid><doi>10.1088/1361-648X/ad68b0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8964-0511</orcidid><orcidid>https://orcid.org/0000-0002-3047-1909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2024-11, Vol.36 (44), p.445404
issn 0953-8984
1361-648X
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ad68b0
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects first-principles calculations
molecular dynamics
non-linear thermal expansion
paraelectric-ferroelectric phase transitions
perovskites
quantum thermal bath
title First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20of%20non-linear%20thermal%20expansion%20in%20cadmium%20titanate%20by%20molecular%20dynamics%20incorporating%20nuclear%20quantum%20effects&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kanayama,%20Kansei&rft.date=2024-11-06&rft.volume=36&rft.issue=44&rft.spage=445404&rft.pages=445404-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad68b0&rft_dat=%3Cproquest_iop_j%3E3086061390%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086061390&rft_id=info:pmid/39074498&rfr_iscdi=true