Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons

Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is foun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2024-09, Vol.36 (36), p.365501
Hauptverfasser: Ye, Qian, Tang, Shunxi, Du, Yan, Liu, Zhengfang, Wu, Qingping, Xiao, Xianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 36
container_start_page 365501
container_title Journal of physics. Condensed matter
container_volume 36
creator Ye, Qian
Tang, Shunxi
Du, Yan
Liu, Zhengfang
Wu, Qingping
Xiao, Xianbo
description Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.
doi_str_mv 10.1088/1361-648X/ad53b4
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ad53b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064581152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-fe0ab424d747f9b608a8cb9cc2f1a0f0431fa2204f030796bb8c810e6beea3543</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMyGPDISeYyd1RoTKh4TEAEhslu2cpaDEbm1n6L-npdCN6aS7532lewi5ZHDLQMo54zUraiE_57qtuBFHZHpYHZMpNBUvZCPFhJyl9AUAQnJxSiZcSg58wafELnu0OXa2cB32bWGDzzH0PbYUfy7Bd5amHEebx4iJat_S9ah9Hgeao_ZpFWKmnadD8KHXG4z02b8h9dqH2BkTfDonJ073CS9-54x8PCzf75-Kl9fH5_u7l8KWssmFQ9BGlKJdiIVrTA1SS2saa0vHNDgQnDldliAccFg0tTHSSgZYG0TNK8Fn5Hrfu4phPWLKauiSxb7XHsOYFIdaVJKxqtyisEdtDClFdGoVu0HHjWKgdmrVzqPaeVR7tdvI1W_7aAZsD4E_l1vgZg90YaW-whj99tn_-74BcCCFOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064581152</pqid></control><display><type>article</type><title>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ye, Qian ; Tang, Shunxi ; Du, Yan ; Liu, Zhengfang ; Wu, Qingping ; Xiao, Xianbo</creator><creatorcontrib>Ye, Qian ; Tang, Shunxi ; Du, Yan ; Liu, Zhengfang ; Wu, Qingping ; Xiao, Xianbo</creatorcontrib><description>Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad53b4</identifier><identifier>PMID: 38830373</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>disorders ; electronic structures ; InSe nanoribbons ; quantum transport</subject><ispartof>Journal of physics. Condensed matter, 2024-09, Vol.36 (36), p.365501</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-fe0ab424d747f9b608a8cb9cc2f1a0f0431fa2204f030796bb8c810e6beea3543</cites><orcidid>0000-0002-1668-3200 ; 0000-0002-5669-0536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ad53b4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38830373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Tang, Shunxi</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Liu, Zhengfang</creatorcontrib><creatorcontrib>Wu, Qingping</creatorcontrib><creatorcontrib>Xiao, Xianbo</creatorcontrib><title>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.</description><subject>disorders</subject><subject>electronic structures</subject><subject>InSe nanoribbons</subject><subject>quantum transport</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwMyGPDISeYyd1RoTKh4TEAEhslu2cpaDEbm1n6L-npdCN6aS7532lewi5ZHDLQMo54zUraiE_57qtuBFHZHpYHZMpNBUvZCPFhJyl9AUAQnJxSiZcSg58wafELnu0OXa2cB32bWGDzzH0PbYUfy7Bd5amHEebx4iJat_S9ah9Hgeao_ZpFWKmnadD8KHXG4z02b8h9dqH2BkTfDonJ073CS9-54x8PCzf75-Kl9fH5_u7l8KWssmFQ9BGlKJdiIVrTA1SS2saa0vHNDgQnDldliAccFg0tTHSSgZYG0TNK8Fn5Hrfu4phPWLKauiSxb7XHsOYFIdaVJKxqtyisEdtDClFdGoVu0HHjWKgdmrVzqPaeVR7tdvI1W_7aAZsD4E_l1vgZg90YaW-whj99tn_-74BcCCFOA</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Ye, Qian</creator><creator>Tang, Shunxi</creator><creator>Du, Yan</creator><creator>Liu, Zhengfang</creator><creator>Wu, Qingping</creator><creator>Xiao, Xianbo</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1668-3200</orcidid><orcidid>https://orcid.org/0000-0002-5669-0536</orcidid></search><sort><creationdate>20240911</creationdate><title>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</title><author>Ye, Qian ; Tang, Shunxi ; Du, Yan ; Liu, Zhengfang ; Wu, Qingping ; Xiao, Xianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-fe0ab424d747f9b608a8cb9cc2f1a0f0431fa2204f030796bb8c810e6beea3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>disorders</topic><topic>electronic structures</topic><topic>InSe nanoribbons</topic><topic>quantum transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Tang, Shunxi</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Liu, Zhengfang</creatorcontrib><creatorcontrib>Wu, Qingping</creatorcontrib><creatorcontrib>Xiao, Xianbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Qian</au><au>Tang, Shunxi</au><au>Du, Yan</au><au>Liu, Zhengfang</au><au>Wu, Qingping</au><au>Xiao, Xianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>36</volume><issue>36</issue><spage>365501</spage><pages>365501-</pages><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38830373</pmid><doi>10.1088/1361-648X/ad53b4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1668-3200</orcidid><orcidid>https://orcid.org/0000-0002-5669-0536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2024-09, Vol.36 (36), p.365501
issn 0953-8984
1361-648X
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ad53b4
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects disorders
electronic structures
InSe nanoribbons
quantum transport
title Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric-field-controlled%20electronic%20structures%20and%20quantum%20transport%20in%20monolayer%20InSe%20nanoribbons&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Ye,%20Qian&rft.date=2024-09-11&rft.volume=36&rft.issue=36&rft.spage=365501&rft.pages=365501-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad53b4&rft_dat=%3Cproquest_iop_j%3E3064581152%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064581152&rft_id=info:pmid/38830373&rfr_iscdi=true