Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons
Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is foun...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2024-09, Vol.36 (36), p.365501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 36 |
container_start_page | 365501 |
container_title | Journal of physics. Condensed matter |
container_volume | 36 |
creator | Ye, Qian Tang, Shunxi Du, Yan Liu, Zhengfang Wu, Qingping Xiao, Xianbo |
description | Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well. |
doi_str_mv | 10.1088/1361-648X/ad53b4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ad53b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064581152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-fe0ab424d747f9b608a8cb9cc2f1a0f0431fa2204f030796bb8c810e6beea3543</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMyGPDISeYyd1RoTKh4TEAEhslu2cpaDEbm1n6L-npdCN6aS7532lewi5ZHDLQMo54zUraiE_57qtuBFHZHpYHZMpNBUvZCPFhJyl9AUAQnJxSiZcSg58wafELnu0OXa2cB32bWGDzzH0PbYUfy7Bd5amHEebx4iJat_S9ah9Hgeao_ZpFWKmnadD8KHXG4z02b8h9dqH2BkTfDonJ073CS9-54x8PCzf75-Kl9fH5_u7l8KWssmFQ9BGlKJdiIVrTA1SS2saa0vHNDgQnDldliAccFg0tTHSSgZYG0TNK8Fn5Hrfu4phPWLKauiSxb7XHsOYFIdaVJKxqtyisEdtDClFdGoVu0HHjWKgdmrVzqPaeVR7tdvI1W_7aAZsD4E_l1vgZg90YaW-whj99tn_-74BcCCFOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064581152</pqid></control><display><type>article</type><title>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ye, Qian ; Tang, Shunxi ; Du, Yan ; Liu, Zhengfang ; Wu, Qingping ; Xiao, Xianbo</creator><creatorcontrib>Ye, Qian ; Tang, Shunxi ; Du, Yan ; Liu, Zhengfang ; Wu, Qingping ; Xiao, Xianbo</creatorcontrib><description>Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad53b4</identifier><identifier>PMID: 38830373</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>disorders ; electronic structures ; InSe nanoribbons ; quantum transport</subject><ispartof>Journal of physics. Condensed matter, 2024-09, Vol.36 (36), p.365501</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-fe0ab424d747f9b608a8cb9cc2f1a0f0431fa2204f030796bb8c810e6beea3543</cites><orcidid>0000-0002-1668-3200 ; 0000-0002-5669-0536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ad53b4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38830373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Tang, Shunxi</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Liu, Zhengfang</creatorcontrib><creatorcontrib>Wu, Qingping</creatorcontrib><creatorcontrib>Xiao, Xianbo</creatorcontrib><title>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.</description><subject>disorders</subject><subject>electronic structures</subject><subject>InSe nanoribbons</subject><subject>quantum transport</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwMyGPDISeYyd1RoTKh4TEAEhslu2cpaDEbm1n6L-npdCN6aS7532lewi5ZHDLQMo54zUraiE_57qtuBFHZHpYHZMpNBUvZCPFhJyl9AUAQnJxSiZcSg58wafELnu0OXa2cB32bWGDzzH0PbYUfy7Bd5amHEebx4iJat_S9ah9Hgeao_ZpFWKmnadD8KHXG4z02b8h9dqH2BkTfDonJ073CS9-54x8PCzf75-Kl9fH5_u7l8KWssmFQ9BGlKJdiIVrTA1SS2saa0vHNDgQnDldliAccFg0tTHSSgZYG0TNK8Fn5Hrfu4phPWLKauiSxb7XHsOYFIdaVJKxqtyisEdtDClFdGoVu0HHjWKgdmrVzqPaeVR7tdvI1W_7aAZsD4E_l1vgZg90YaW-whj99tn_-74BcCCFOA</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Ye, Qian</creator><creator>Tang, Shunxi</creator><creator>Du, Yan</creator><creator>Liu, Zhengfang</creator><creator>Wu, Qingping</creator><creator>Xiao, Xianbo</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1668-3200</orcidid><orcidid>https://orcid.org/0000-0002-5669-0536</orcidid></search><sort><creationdate>20240911</creationdate><title>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</title><author>Ye, Qian ; Tang, Shunxi ; Du, Yan ; Liu, Zhengfang ; Wu, Qingping ; Xiao, Xianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-fe0ab424d747f9b608a8cb9cc2f1a0f0431fa2204f030796bb8c810e6beea3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>disorders</topic><topic>electronic structures</topic><topic>InSe nanoribbons</topic><topic>quantum transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Tang, Shunxi</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Liu, Zhengfang</creatorcontrib><creatorcontrib>Wu, Qingping</creatorcontrib><creatorcontrib>Xiao, Xianbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Qian</au><au>Tang, Shunxi</au><au>Du, Yan</au><au>Liu, Zhengfang</au><au>Wu, Qingping</au><au>Xiao, Xianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>36</volume><issue>36</issue><spage>365501</spage><pages>365501-</pages><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38830373</pmid><doi>10.1088/1361-648X/ad53b4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1668-3200</orcidid><orcidid>https://orcid.org/0000-0002-5669-0536</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2024-09, Vol.36 (36), p.365501 |
issn | 0953-8984 1361-648X 1361-648X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_648X_ad53b4 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | disorders electronic structures InSe nanoribbons quantum transport |
title | Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric-field-controlled%20electronic%20structures%20and%20quantum%20transport%20in%20monolayer%20InSe%20nanoribbons&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Ye,%20Qian&rft.date=2024-09-11&rft.volume=36&rft.issue=36&rft.spage=365501&rft.pages=365501-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad53b4&rft_dat=%3Cproquest_iop_j%3E3064581152%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064581152&rft_id=info:pmid/38830373&rfr_iscdi=true |