The 2021 room-temperature superconductivity roadmap

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2022-03, Vol.34 (18), p.183002
Hauptverfasser: Boeri, Lilia, Hennig, Richard, Hirschfeld, Peter, Profeta, Gianni, Sanna, Antonio, Zurek, Eva, Pickett, Warren E, Amsler, Maximilian, Dias, Ranga, Eremets, Mikhail I, Heil, Christoph, Hemley, Russell J, Liu, Hanyu, Ma, Yanming, Pierleoni, Carlo, Kolmogorov, Aleksey N, Rybin, Nikita, Novoselov, Dmitry, Anisimov, Vladimir, Oganov, Artem R, Pickard, Chris J, Bi, Tiange, Arita, Ryotaro, Errea, Ion, Pellegrini, Camilla, Requist, Ryan, Gross, E K U, Margine, Elena Roxana, Xie, Stephen R, Quan, Yundi, Hire, Ajinkya, Fanfarillo, Laura, Stewart, G R, Hamlin, J J, Stanev, Valentin, Gonnelli, Renato S, Piatti, Erik, Romanin, Davide, Daghero, Dario, Valenti, Roser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 183002
container_title Journal of physics. Condensed matter
container_volume 34
creator Boeri, Lilia
Hennig, Richard
Hirschfeld, Peter
Profeta, Gianni
Sanna, Antonio
Zurek, Eva
Pickett, Warren E
Amsler, Maximilian
Dias, Ranga
Eremets, Mikhail I
Heil, Christoph
Hemley, Russell J
Liu, Hanyu
Ma, Yanming
Pierleoni, Carlo
Kolmogorov, Aleksey N
Rybin, Nikita
Novoselov, Dmitry
Anisimov, Vladimir
Oganov, Artem R
Pickard, Chris J
Bi, Tiange
Arita, Ryotaro
Errea, Ion
Pellegrini, Camilla
Requist, Ryan
Gross, E K U
Margine, Elena Roxana
Xie, Stephen R
Quan, Yundi
Hire, Ajinkya
Fanfarillo, Laura
Stewart, G R
Hamlin, J J
Stanev, Valentin
Gonnelli, Renato S
Piatti, Erik
Romanin, Davide
Daghero, Dario
Valenti, Roser
description Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.
doi_str_mv 10.1088/1361-648X/ac2864
format Article
fullrecord <record><control><sourceid>pubmed_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ac2864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34544070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-e11158c86d974ecdb6a137104f0a761d3475fa0513a12281b1e94698c28748a13</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnmR48WLde02avh5l-AsGXiZ4C1masg67liQV9t8vo7qTQiDh8fnmvfdh7BrhAYFohlxiIgV9zrRJSYoTNj6WTtkYiownVJAYsQvvNwAgiItzNuIiEwJyGDO-XNtpCilOXds2SbBNZ50OvbNT38enabdlb0L9XYddRHTZ6O6SnVX6y9urn3vCPp6flvPXZPH-8jZ_XCRGkAiJRcSMDMmyyIU15Upq5DmCqEDnEksu8qzSkCHXmKaEK7SFkAXFTXJBkZ2w2-Hf1odaeVMHa9ZxoK01QSHJtCCKEAyQca33zlaqc3Wj3U4hqIMkdTCiDkbUIClGboZI168aWx4Dv1YicDcAddupTdu7bVxTmSYSsW88HCBVXVlF8v4P8t_OeyG4euc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The 2021 room-temperature superconductivity roadmap</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Boeri, Lilia ; Hennig, Richard ; Hirschfeld, Peter ; Profeta, Gianni ; Sanna, Antonio ; Zurek, Eva ; Pickett, Warren E ; Amsler, Maximilian ; Dias, Ranga ; Eremets, Mikhail I ; Heil, Christoph ; Hemley, Russell J ; Liu, Hanyu ; Ma, Yanming ; Pierleoni, Carlo ; Kolmogorov, Aleksey N ; Rybin, Nikita ; Novoselov, Dmitry ; Anisimov, Vladimir ; Oganov, Artem R ; Pickard, Chris J ; Bi, Tiange ; Arita, Ryotaro ; Errea, Ion ; Pellegrini, Camilla ; Requist, Ryan ; Gross, E K U ; Margine, Elena Roxana ; Xie, Stephen R ; Quan, Yundi ; Hire, Ajinkya ; Fanfarillo, Laura ; Stewart, G R ; Hamlin, J J ; Stanev, Valentin ; Gonnelli, Renato S ; Piatti, Erik ; Romanin, Davide ; Daghero, Dario ; Valenti, Roser</creator><creatorcontrib>Boeri, Lilia ; Hennig, Richard ; Hirschfeld, Peter ; Profeta, Gianni ; Sanna, Antonio ; Zurek, Eva ; Pickett, Warren E ; Amsler, Maximilian ; Dias, Ranga ; Eremets, Mikhail I ; Heil, Christoph ; Hemley, Russell J ; Liu, Hanyu ; Ma, Yanming ; Pierleoni, Carlo ; Kolmogorov, Aleksey N ; Rybin, Nikita ; Novoselov, Dmitry ; Anisimov, Vladimir ; Oganov, Artem R ; Pickard, Chris J ; Bi, Tiange ; Arita, Ryotaro ; Errea, Ion ; Pellegrini, Camilla ; Requist, Ryan ; Gross, E K U ; Margine, Elena Roxana ; Xie, Stephen R ; Quan, Yundi ; Hire, Ajinkya ; Fanfarillo, Laura ; Stewart, G R ; Hamlin, J J ; Stanev, Valentin ; Gonnelli, Renato S ; Piatti, Erik ; Romanin, Davide ; Daghero, Dario ; Valenti, Roser ; Univ. of Rochester, NY (United States) ; Univ. of Florida, Gainesville, FL (United States) ; Univ. of Illinois, Chicago, IL (United States)</creatorcontrib><description>Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ac2864</identifier><identifier>PMID: 34544070</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>"Toward hot superconductivity" ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; crystal structure prediction ; electron–phonon interaction ; hydrides ; novel superconductors ; roadmap, superconductor discovery, machine learning, high throughput ; superconductivity ; superconductor</subject><ispartof>Journal of physics. Condensed matter, 2022-03, Vol.34 (18), p.183002</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-e11158c86d974ecdb6a137104f0a761d3475fa0513a12281b1e94698c28748a13</citedby><cites>FETCH-LOGICAL-c484t-e11158c86d974ecdb6a137104f0a761d3475fa0513a12281b1e94698c28748a13</cites><orcidid>0000-0003-0375-7386 ; 0000-0003-1668-3734 ; 0000-0002-3683-861X ; 0000-0002-6359-9749 ; 0000-0001-5866-190X ; 0000-0003-3147-2521 ; 0000-0001-6114-9552 ; 0000-0002-0830-4928 ; 0000-0001-6887-3463 ; 0000-0003-3711-0011 ; 0000-0001-9188-3846 ; 0000-0002-5573-9940 ; 0000-0001-8415-4514 ; 0000-0002-0669-7756 ; 0000-0001-7053-5295 ; 0000-0002-0535-7573 ; 0000-0002-6452-8520 ; 0000-0002-8685-153X ; 0000-0001-8733-5230 ; 0000-0001-6129-133X ; 0000-0003-2614-1111 ; 0000-0002-0113-759X ; 0000-0003-4591-7691 ; 0000-0001-7251-1684 ; 0000-0001-8350-2476 ; 0000-0003-2180-7682 ; 0000-0001-7082-9728 ; 0000-0001-9861-3152 ; 0000-0001-9693-9183 ; 0000-0001-5725-072X ; 0000-0003-2394-5421 ; 0000-0002-9684-5432 ; 0000-0003-0738-867X ; 0000-0002-5719-6580 ; 0000-0001-7108-8458 ; 0000-0003-1186-2207 ; 0000-0003-0497-1165 ; 0000-0003-1094-5369 ; 0000-0003-4933-7686 ; 0000-0001-7398-8521 ; 0000000198613152 ; 0000000205357573 ; 0000000303757386 ; 0000000191883846 ; 0000000161149552 ; 0000000311862207 ; 0000000323945421 ; 000000016129133X ; 0000000173988521 ; 0000000168873463 ; 0000000331472521 ; 0000000310945369 ; 000000030738867X ; 0000000172511684 ; 000000023683861X ; 0000000296845432 ; 0000000337110011 ; 0000000196939183 ; 000000028685153X ; 0000000316683734 ; 0000000206697756 ; 0000000326141111 ; 0000000184154514 ; 000000020113759X ; 0000000170829728 ; 000000015725072X ; 0000000263599749 ; 0000000345917691 ; 0000000264528520 ; 0000000183502476 ; 0000000349337686 ; 0000000171088458 ; 0000000208304928 ; 0000000187335230 ; 0000000257196580 ; 000000015866190X ; 0000000304971165 ; 0000000170535295 ; 0000000255739940 ; 0000000321807682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ac2864/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34544070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1862988$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boeri, Lilia</creatorcontrib><creatorcontrib>Hennig, Richard</creatorcontrib><creatorcontrib>Hirschfeld, Peter</creatorcontrib><creatorcontrib>Profeta, Gianni</creatorcontrib><creatorcontrib>Sanna, Antonio</creatorcontrib><creatorcontrib>Zurek, Eva</creatorcontrib><creatorcontrib>Pickett, Warren E</creatorcontrib><creatorcontrib>Amsler, Maximilian</creatorcontrib><creatorcontrib>Dias, Ranga</creatorcontrib><creatorcontrib>Eremets, Mikhail I</creatorcontrib><creatorcontrib>Heil, Christoph</creatorcontrib><creatorcontrib>Hemley, Russell J</creatorcontrib><creatorcontrib>Liu, Hanyu</creatorcontrib><creatorcontrib>Ma, Yanming</creatorcontrib><creatorcontrib>Pierleoni, Carlo</creatorcontrib><creatorcontrib>Kolmogorov, Aleksey N</creatorcontrib><creatorcontrib>Rybin, Nikita</creatorcontrib><creatorcontrib>Novoselov, Dmitry</creatorcontrib><creatorcontrib>Anisimov, Vladimir</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><creatorcontrib>Pickard, Chris J</creatorcontrib><creatorcontrib>Bi, Tiange</creatorcontrib><creatorcontrib>Arita, Ryotaro</creatorcontrib><creatorcontrib>Errea, Ion</creatorcontrib><creatorcontrib>Pellegrini, Camilla</creatorcontrib><creatorcontrib>Requist, Ryan</creatorcontrib><creatorcontrib>Gross, E K U</creatorcontrib><creatorcontrib>Margine, Elena Roxana</creatorcontrib><creatorcontrib>Xie, Stephen R</creatorcontrib><creatorcontrib>Quan, Yundi</creatorcontrib><creatorcontrib>Hire, Ajinkya</creatorcontrib><creatorcontrib>Fanfarillo, Laura</creatorcontrib><creatorcontrib>Stewart, G R</creatorcontrib><creatorcontrib>Hamlin, J J</creatorcontrib><creatorcontrib>Stanev, Valentin</creatorcontrib><creatorcontrib>Gonnelli, Renato S</creatorcontrib><creatorcontrib>Piatti, Erik</creatorcontrib><creatorcontrib>Romanin, Davide</creatorcontrib><creatorcontrib>Daghero, Dario</creatorcontrib><creatorcontrib>Valenti, Roser</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois, Chicago, IL (United States)</creatorcontrib><title>The 2021 room-temperature superconductivity roadmap</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.</description><subject>"Toward hot superconductivity"</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>crystal structure prediction</subject><subject>electron–phonon interaction</subject><subject>hydrides</subject><subject>novel superconductors</subject><subject>roadmap, superconductor discovery, machine learning, high throughput</subject><subject>superconductivity</subject><subject>superconductor</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAUx4Mobk7vnmR48WLde02avh5l-AsGXiZ4C1masg67liQV9t8vo7qTQiDh8fnmvfdh7BrhAYFohlxiIgV9zrRJSYoTNj6WTtkYiownVJAYsQvvNwAgiItzNuIiEwJyGDO-XNtpCilOXds2SbBNZ50OvbNT38enabdlb0L9XYddRHTZ6O6SnVX6y9urn3vCPp6flvPXZPH-8jZ_XCRGkAiJRcSMDMmyyIU15Upq5DmCqEDnEksu8qzSkCHXmKaEK7SFkAXFTXJBkZ2w2-Hf1odaeVMHa9ZxoK01QSHJtCCKEAyQca33zlaqc3Wj3U4hqIMkdTCiDkbUIClGboZI168aWx4Dv1YicDcAddupTdu7bVxTmSYSsW88HCBVXVlF8v4P8t_OeyG4euc</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Boeri, Lilia</creator><creator>Hennig, Richard</creator><creator>Hirschfeld, Peter</creator><creator>Profeta, Gianni</creator><creator>Sanna, Antonio</creator><creator>Zurek, Eva</creator><creator>Pickett, Warren E</creator><creator>Amsler, Maximilian</creator><creator>Dias, Ranga</creator><creator>Eremets, Mikhail I</creator><creator>Heil, Christoph</creator><creator>Hemley, Russell J</creator><creator>Liu, Hanyu</creator><creator>Ma, Yanming</creator><creator>Pierleoni, Carlo</creator><creator>Kolmogorov, Aleksey N</creator><creator>Rybin, Nikita</creator><creator>Novoselov, Dmitry</creator><creator>Anisimov, Vladimir</creator><creator>Oganov, Artem R</creator><creator>Pickard, Chris J</creator><creator>Bi, Tiange</creator><creator>Arita, Ryotaro</creator><creator>Errea, Ion</creator><creator>Pellegrini, Camilla</creator><creator>Requist, Ryan</creator><creator>Gross, E K U</creator><creator>Margine, Elena Roxana</creator><creator>Xie, Stephen R</creator><creator>Quan, Yundi</creator><creator>Hire, Ajinkya</creator><creator>Fanfarillo, Laura</creator><creator>Stewart, G R</creator><creator>Hamlin, J J</creator><creator>Stanev, Valentin</creator><creator>Gonnelli, Renato S</creator><creator>Piatti, Erik</creator><creator>Romanin, Davide</creator><creator>Daghero, Dario</creator><creator>Valenti, Roser</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0375-7386</orcidid><orcidid>https://orcid.org/0000-0003-1668-3734</orcidid><orcidid>https://orcid.org/0000-0002-3683-861X</orcidid><orcidid>https://orcid.org/0000-0002-6359-9749</orcidid><orcidid>https://orcid.org/0000-0001-5866-190X</orcidid><orcidid>https://orcid.org/0000-0003-3147-2521</orcidid><orcidid>https://orcid.org/0000-0001-6114-9552</orcidid><orcidid>https://orcid.org/0000-0002-0830-4928</orcidid><orcidid>https://orcid.org/0000-0001-6887-3463</orcidid><orcidid>https://orcid.org/0000-0003-3711-0011</orcidid><orcidid>https://orcid.org/0000-0001-9188-3846</orcidid><orcidid>https://orcid.org/0000-0002-5573-9940</orcidid><orcidid>https://orcid.org/0000-0001-8415-4514</orcidid><orcidid>https://orcid.org/0000-0002-0669-7756</orcidid><orcidid>https://orcid.org/0000-0001-7053-5295</orcidid><orcidid>https://orcid.org/0000-0002-0535-7573</orcidid><orcidid>https://orcid.org/0000-0002-6452-8520</orcidid><orcidid>https://orcid.org/0000-0002-8685-153X</orcidid><orcidid>https://orcid.org/0000-0001-8733-5230</orcidid><orcidid>https://orcid.org/0000-0001-6129-133X</orcidid><orcidid>https://orcid.org/0000-0003-2614-1111</orcidid><orcidid>https://orcid.org/0000-0002-0113-759X</orcidid><orcidid>https://orcid.org/0000-0003-4591-7691</orcidid><orcidid>https://orcid.org/0000-0001-7251-1684</orcidid><orcidid>https://orcid.org/0000-0001-8350-2476</orcidid><orcidid>https://orcid.org/0000-0003-2180-7682</orcidid><orcidid>https://orcid.org/0000-0001-7082-9728</orcidid><orcidid>https://orcid.org/0000-0001-9861-3152</orcidid><orcidid>https://orcid.org/0000-0001-9693-9183</orcidid><orcidid>https://orcid.org/0000-0001-5725-072X</orcidid><orcidid>https://orcid.org/0000-0003-2394-5421</orcidid><orcidid>https://orcid.org/0000-0002-9684-5432</orcidid><orcidid>https://orcid.org/0000-0003-0738-867X</orcidid><orcidid>https://orcid.org/0000-0002-5719-6580</orcidid><orcidid>https://orcid.org/0000-0001-7108-8458</orcidid><orcidid>https://orcid.org/0000-0003-1186-2207</orcidid><orcidid>https://orcid.org/0000-0003-0497-1165</orcidid><orcidid>https://orcid.org/0000-0003-1094-5369</orcidid><orcidid>https://orcid.org/0000-0003-4933-7686</orcidid><orcidid>https://orcid.org/0000-0001-7398-8521</orcidid><orcidid>https://orcid.org/0000000198613152</orcidid><orcidid>https://orcid.org/0000000205357573</orcidid><orcidid>https://orcid.org/0000000303757386</orcidid><orcidid>https://orcid.org/0000000191883846</orcidid><orcidid>https://orcid.org/0000000161149552</orcidid><orcidid>https://orcid.org/0000000311862207</orcidid><orcidid>https://orcid.org/0000000323945421</orcidid><orcidid>https://orcid.org/000000016129133X</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000168873463</orcidid><orcidid>https://orcid.org/0000000331472521</orcidid><orcidid>https://orcid.org/0000000310945369</orcidid><orcidid>https://orcid.org/000000030738867X</orcidid><orcidid>https://orcid.org/0000000172511684</orcidid><orcidid>https://orcid.org/000000023683861X</orcidid><orcidid>https://orcid.org/0000000296845432</orcidid><orcidid>https://orcid.org/0000000337110011</orcidid><orcidid>https://orcid.org/0000000196939183</orcidid><orcidid>https://orcid.org/000000028685153X</orcidid><orcidid>https://orcid.org/0000000316683734</orcidid><orcidid>https://orcid.org/0000000206697756</orcidid><orcidid>https://orcid.org/0000000326141111</orcidid><orcidid>https://orcid.org/0000000184154514</orcidid><orcidid>https://orcid.org/000000020113759X</orcidid><orcidid>https://orcid.org/0000000170829728</orcidid><orcidid>https://orcid.org/000000015725072X</orcidid><orcidid>https://orcid.org/0000000263599749</orcidid><orcidid>https://orcid.org/0000000345917691</orcidid><orcidid>https://orcid.org/0000000264528520</orcidid><orcidid>https://orcid.org/0000000183502476</orcidid><orcidid>https://orcid.org/0000000349337686</orcidid><orcidid>https://orcid.org/0000000171088458</orcidid><orcidid>https://orcid.org/0000000208304928</orcidid><orcidid>https://orcid.org/0000000187335230</orcidid><orcidid>https://orcid.org/0000000257196580</orcidid><orcidid>https://orcid.org/000000015866190X</orcidid><orcidid>https://orcid.org/0000000304971165</orcidid><orcidid>https://orcid.org/0000000170535295</orcidid><orcidid>https://orcid.org/0000000255739940</orcidid><orcidid>https://orcid.org/0000000321807682</orcidid></search><sort><creationdate>20220303</creationdate><title>The 2021 room-temperature superconductivity roadmap</title><author>Boeri, Lilia ; Hennig, Richard ; Hirschfeld, Peter ; Profeta, Gianni ; Sanna, Antonio ; Zurek, Eva ; Pickett, Warren E ; Amsler, Maximilian ; Dias, Ranga ; Eremets, Mikhail I ; Heil, Christoph ; Hemley, Russell J ; Liu, Hanyu ; Ma, Yanming ; Pierleoni, Carlo ; Kolmogorov, Aleksey N ; Rybin, Nikita ; Novoselov, Dmitry ; Anisimov, Vladimir ; Oganov, Artem R ; Pickard, Chris J ; Bi, Tiange ; Arita, Ryotaro ; Errea, Ion ; Pellegrini, Camilla ; Requist, Ryan ; Gross, E K U ; Margine, Elena Roxana ; Xie, Stephen R ; Quan, Yundi ; Hire, Ajinkya ; Fanfarillo, Laura ; Stewart, G R ; Hamlin, J J ; Stanev, Valentin ; Gonnelli, Renato S ; Piatti, Erik ; Romanin, Davide ; Daghero, Dario ; Valenti, Roser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-e11158c86d974ecdb6a137104f0a761d3475fa0513a12281b1e94698c28748a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>"Toward hot superconductivity"</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>crystal structure prediction</topic><topic>electron–phonon interaction</topic><topic>hydrides</topic><topic>novel superconductors</topic><topic>roadmap, superconductor discovery, machine learning, high throughput</topic><topic>superconductivity</topic><topic>superconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boeri, Lilia</creatorcontrib><creatorcontrib>Hennig, Richard</creatorcontrib><creatorcontrib>Hirschfeld, Peter</creatorcontrib><creatorcontrib>Profeta, Gianni</creatorcontrib><creatorcontrib>Sanna, Antonio</creatorcontrib><creatorcontrib>Zurek, Eva</creatorcontrib><creatorcontrib>Pickett, Warren E</creatorcontrib><creatorcontrib>Amsler, Maximilian</creatorcontrib><creatorcontrib>Dias, Ranga</creatorcontrib><creatorcontrib>Eremets, Mikhail I</creatorcontrib><creatorcontrib>Heil, Christoph</creatorcontrib><creatorcontrib>Hemley, Russell J</creatorcontrib><creatorcontrib>Liu, Hanyu</creatorcontrib><creatorcontrib>Ma, Yanming</creatorcontrib><creatorcontrib>Pierleoni, Carlo</creatorcontrib><creatorcontrib>Kolmogorov, Aleksey N</creatorcontrib><creatorcontrib>Rybin, Nikita</creatorcontrib><creatorcontrib>Novoselov, Dmitry</creatorcontrib><creatorcontrib>Anisimov, Vladimir</creatorcontrib><creatorcontrib>Oganov, Artem R</creatorcontrib><creatorcontrib>Pickard, Chris J</creatorcontrib><creatorcontrib>Bi, Tiange</creatorcontrib><creatorcontrib>Arita, Ryotaro</creatorcontrib><creatorcontrib>Errea, Ion</creatorcontrib><creatorcontrib>Pellegrini, Camilla</creatorcontrib><creatorcontrib>Requist, Ryan</creatorcontrib><creatorcontrib>Gross, E K U</creatorcontrib><creatorcontrib>Margine, Elena Roxana</creatorcontrib><creatorcontrib>Xie, Stephen R</creatorcontrib><creatorcontrib>Quan, Yundi</creatorcontrib><creatorcontrib>Hire, Ajinkya</creatorcontrib><creatorcontrib>Fanfarillo, Laura</creatorcontrib><creatorcontrib>Stewart, G R</creatorcontrib><creatorcontrib>Hamlin, J J</creatorcontrib><creatorcontrib>Stanev, Valentin</creatorcontrib><creatorcontrib>Gonnelli, Renato S</creatorcontrib><creatorcontrib>Piatti, Erik</creatorcontrib><creatorcontrib>Romanin, Davide</creatorcontrib><creatorcontrib>Daghero, Dario</creatorcontrib><creatorcontrib>Valenti, Roser</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois, Chicago, IL (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boeri, Lilia</au><au>Hennig, Richard</au><au>Hirschfeld, Peter</au><au>Profeta, Gianni</au><au>Sanna, Antonio</au><au>Zurek, Eva</au><au>Pickett, Warren E</au><au>Amsler, Maximilian</au><au>Dias, Ranga</au><au>Eremets, Mikhail I</au><au>Heil, Christoph</au><au>Hemley, Russell J</au><au>Liu, Hanyu</au><au>Ma, Yanming</au><au>Pierleoni, Carlo</au><au>Kolmogorov, Aleksey N</au><au>Rybin, Nikita</au><au>Novoselov, Dmitry</au><au>Anisimov, Vladimir</au><au>Oganov, Artem R</au><au>Pickard, Chris J</au><au>Bi, Tiange</au><au>Arita, Ryotaro</au><au>Errea, Ion</au><au>Pellegrini, Camilla</au><au>Requist, Ryan</au><au>Gross, E K U</au><au>Margine, Elena Roxana</au><au>Xie, Stephen R</au><au>Quan, Yundi</au><au>Hire, Ajinkya</au><au>Fanfarillo, Laura</au><au>Stewart, G R</au><au>Hamlin, J J</au><au>Stanev, Valentin</au><au>Gonnelli, Renato S</au><au>Piatti, Erik</au><au>Romanin, Davide</au><au>Daghero, Dario</au><au>Valenti, Roser</au><aucorp>Univ. of Rochester, NY (United States)</aucorp><aucorp>Univ. of Florida, Gainesville, FL (United States)</aucorp><aucorp>Univ. of Illinois, Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2021 room-temperature superconductivity roadmap</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>34</volume><issue>18</issue><spage>183002</spage><pages>183002-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34544070</pmid><doi>10.1088/1361-648X/ac2864</doi><tpages>51</tpages><orcidid>https://orcid.org/0000-0003-0375-7386</orcidid><orcidid>https://orcid.org/0000-0003-1668-3734</orcidid><orcidid>https://orcid.org/0000-0002-3683-861X</orcidid><orcidid>https://orcid.org/0000-0002-6359-9749</orcidid><orcidid>https://orcid.org/0000-0001-5866-190X</orcidid><orcidid>https://orcid.org/0000-0003-3147-2521</orcidid><orcidid>https://orcid.org/0000-0001-6114-9552</orcidid><orcidid>https://orcid.org/0000-0002-0830-4928</orcidid><orcidid>https://orcid.org/0000-0001-6887-3463</orcidid><orcidid>https://orcid.org/0000-0003-3711-0011</orcidid><orcidid>https://orcid.org/0000-0001-9188-3846</orcidid><orcidid>https://orcid.org/0000-0002-5573-9940</orcidid><orcidid>https://orcid.org/0000-0001-8415-4514</orcidid><orcidid>https://orcid.org/0000-0002-0669-7756</orcidid><orcidid>https://orcid.org/0000-0001-7053-5295</orcidid><orcidid>https://orcid.org/0000-0002-0535-7573</orcidid><orcidid>https://orcid.org/0000-0002-6452-8520</orcidid><orcidid>https://orcid.org/0000-0002-8685-153X</orcidid><orcidid>https://orcid.org/0000-0001-8733-5230</orcidid><orcidid>https://orcid.org/0000-0001-6129-133X</orcidid><orcidid>https://orcid.org/0000-0003-2614-1111</orcidid><orcidid>https://orcid.org/0000-0002-0113-759X</orcidid><orcidid>https://orcid.org/0000-0003-4591-7691</orcidid><orcidid>https://orcid.org/0000-0001-7251-1684</orcidid><orcidid>https://orcid.org/0000-0001-8350-2476</orcidid><orcidid>https://orcid.org/0000-0003-2180-7682</orcidid><orcidid>https://orcid.org/0000-0001-7082-9728</orcidid><orcidid>https://orcid.org/0000-0001-9861-3152</orcidid><orcidid>https://orcid.org/0000-0001-9693-9183</orcidid><orcidid>https://orcid.org/0000-0001-5725-072X</orcidid><orcidid>https://orcid.org/0000-0003-2394-5421</orcidid><orcidid>https://orcid.org/0000-0002-9684-5432</orcidid><orcidid>https://orcid.org/0000-0003-0738-867X</orcidid><orcidid>https://orcid.org/0000-0002-5719-6580</orcidid><orcidid>https://orcid.org/0000-0001-7108-8458</orcidid><orcidid>https://orcid.org/0000-0003-1186-2207</orcidid><orcidid>https://orcid.org/0000-0003-0497-1165</orcidid><orcidid>https://orcid.org/0000-0003-1094-5369</orcidid><orcidid>https://orcid.org/0000-0003-4933-7686</orcidid><orcidid>https://orcid.org/0000-0001-7398-8521</orcidid><orcidid>https://orcid.org/0000000198613152</orcidid><orcidid>https://orcid.org/0000000205357573</orcidid><orcidid>https://orcid.org/0000000303757386</orcidid><orcidid>https://orcid.org/0000000191883846</orcidid><orcidid>https://orcid.org/0000000161149552</orcidid><orcidid>https://orcid.org/0000000311862207</orcidid><orcidid>https://orcid.org/0000000323945421</orcidid><orcidid>https://orcid.org/000000016129133X</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000168873463</orcidid><orcidid>https://orcid.org/0000000331472521</orcidid><orcidid>https://orcid.org/0000000310945369</orcidid><orcidid>https://orcid.org/000000030738867X</orcidid><orcidid>https://orcid.org/0000000172511684</orcidid><orcidid>https://orcid.org/000000023683861X</orcidid><orcidid>https://orcid.org/0000000296845432</orcidid><orcidid>https://orcid.org/0000000337110011</orcidid><orcidid>https://orcid.org/0000000196939183</orcidid><orcidid>https://orcid.org/000000028685153X</orcidid><orcidid>https://orcid.org/0000000316683734</orcidid><orcidid>https://orcid.org/0000000206697756</orcidid><orcidid>https://orcid.org/0000000326141111</orcidid><orcidid>https://orcid.org/0000000184154514</orcidid><orcidid>https://orcid.org/000000020113759X</orcidid><orcidid>https://orcid.org/0000000170829728</orcidid><orcidid>https://orcid.org/000000015725072X</orcidid><orcidid>https://orcid.org/0000000263599749</orcidid><orcidid>https://orcid.org/0000000345917691</orcidid><orcidid>https://orcid.org/0000000264528520</orcidid><orcidid>https://orcid.org/0000000183502476</orcidid><orcidid>https://orcid.org/0000000349337686</orcidid><orcidid>https://orcid.org/0000000171088458</orcidid><orcidid>https://orcid.org/0000000208304928</orcidid><orcidid>https://orcid.org/0000000187335230</orcidid><orcidid>https://orcid.org/0000000257196580</orcidid><orcidid>https://orcid.org/000000015866190X</orcidid><orcidid>https://orcid.org/0000000304971165</orcidid><orcidid>https://orcid.org/0000000170535295</orcidid><orcidid>https://orcid.org/0000000255739940</orcidid><orcidid>https://orcid.org/0000000321807682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2022-03, Vol.34 (18), p.183002
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ac2864
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects "Toward hot superconductivity"
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
crystal structure prediction
electron–phonon interaction
hydrides
novel superconductors
roadmap, superconductor discovery, machine learning, high throughput
superconductivity
superconductor
title The 2021 room-temperature superconductivity roadmap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202021%20room-temperature%20superconductivity%20roadmap&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Boeri,%20Lilia&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States)&rft.date=2022-03-03&rft.volume=34&rft.issue=18&rft.spage=183002&rft.pages=183002-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ac2864&rft_dat=%3Cpubmed_iop_j%3E34544070%3C/pubmed_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34544070&rfr_iscdi=true