Excited states in hydrogenated single-layer MoS2
Our calculations of the excitation spectrum of single-layer MoS2 at several hydrogen coverages, using a density-matrix based time-dependent density-functional theory (TDDFT) show that the fully hydrogenated system is metallic, while at lower coverages the spectrum consists of spin-polarized partiall...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2021-02, Vol.33 (7), p.075201-075201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 075201 |
---|---|
container_issue | 7 |
container_start_page | 075201 |
container_title | Journal of physics. Condensed matter |
container_volume | 33 |
creator | Din, Naseem Ud Turkowski, Volodymyr Rahman, Talat S |
description | Our calculations of the excitation spectrum of single-layer MoS2 at several hydrogen coverages, using a density-matrix based time-dependent density-functional theory (TDDFT) show that the fully hydrogenated system is metallic, while at lower coverages the spectrum consists of spin-polarized partially filled localized mid-gap states. The calculated absorption spectrum of the system reveals standard excitonic peaks corresponding to the bound valence-band hole and conduction-band electron, as well as excitonic peaks that involve the mid-gap states. Binding energies of the excitons of the hydrogenated system are found to be relatively large (few tens of meV), making their experimental detection facile and suggesting hydrogenation as a knob for tuning the optical properties of single-layer MoS2. Importantly, we find hydrogenation to suppress visible light photoluminescence, in agreement with experimental observations. In contrast, both Li and Na atoms transform the system into an n-doped non-magnetic semiconductor that does not allow excitonic states. |
doi_str_mv | 10.1088/1361-648X/abc971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_abc971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460080837</sourcerecordid><originalsourceid>FETCH-LOGICAL-i256t-7f82212458373bcba8379b8e6c1bf0531c286726d1cd6b9a6eacdc48e18530413</originalsourceid><addsrcrecordid>eNptkE1Lw0AURQdRMFb3LrMSF8a-N195WUppVai4UMHdMJlMakqaxEwK9t_bWHHl6sLlcLkcxi4RbhGIpig0JlrS-9TmLkvxiEV_1TGLIFMioYzkKTsLYQ0AkoSMGMy_XDX4Ig6DHXyIqyb-2BV9u_KN_amrZlX7pLY738dP7Qs_ZyelrYO_-M0Je1vMX2cPyfL5_nF2t0wqrvSQpCVxjlwqEqnIXW73meXktcO8BCXQcdIp1wW6QueZ1d66wknySEqARDFh14fdrm8_tz4MZlMF5-vaNr7dBsOlBiAY5yfs5oBWbWfW7bZv9scMghnFmNGCGS2Yg5g9fvUP7jZGCJMaSBUHNF1Rim91p2HN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460080837</pqid></control><display><type>article</type><title>Excited states in hydrogenated single-layer MoS2</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Din, Naseem Ud ; Turkowski, Volodymyr ; Rahman, Talat S</creator><creatorcontrib>Din, Naseem Ud ; Turkowski, Volodymyr ; Rahman, Talat S</creatorcontrib><description>Our calculations of the excitation spectrum of single-layer MoS2 at several hydrogen coverages, using a density-matrix based time-dependent density-functional theory (TDDFT) show that the fully hydrogenated system is metallic, while at lower coverages the spectrum consists of spin-polarized partially filled localized mid-gap states. The calculated absorption spectrum of the system reveals standard excitonic peaks corresponding to the bound valence-band hole and conduction-band electron, as well as excitonic peaks that involve the mid-gap states. Binding energies of the excitons of the hydrogenated system are found to be relatively large (few tens of meV), making their experimental detection facile and suggesting hydrogenation as a knob for tuning the optical properties of single-layer MoS2. Importantly, we find hydrogenation to suppress visible light photoluminescence, in agreement with experimental observations. In contrast, both Li and Na atoms transform the system into an n-doped non-magnetic semiconductor that does not allow excitonic states.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/abc971</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>absorption and emission spectrum ; excitation spectrum ; excitons ; optical properties</subject><ispartof>Journal of physics. Condensed matter, 2021-02, Vol.33 (7), p.075201-075201</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0762-0002 ; 0000-0003-3889-7776 ; 0000-0002-7972-4057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/abc971/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Din, Naseem Ud</creatorcontrib><creatorcontrib>Turkowski, Volodymyr</creatorcontrib><creatorcontrib>Rahman, Talat S</creatorcontrib><title>Excited states in hydrogenated single-layer MoS2</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Our calculations of the excitation spectrum of single-layer MoS2 at several hydrogen coverages, using a density-matrix based time-dependent density-functional theory (TDDFT) show that the fully hydrogenated system is metallic, while at lower coverages the spectrum consists of spin-polarized partially filled localized mid-gap states. The calculated absorption spectrum of the system reveals standard excitonic peaks corresponding to the bound valence-band hole and conduction-band electron, as well as excitonic peaks that involve the mid-gap states. Binding energies of the excitons of the hydrogenated system are found to be relatively large (few tens of meV), making their experimental detection facile and suggesting hydrogenation as a knob for tuning the optical properties of single-layer MoS2. Importantly, we find hydrogenation to suppress visible light photoluminescence, in agreement with experimental observations. In contrast, both Li and Na atoms transform the system into an n-doped non-magnetic semiconductor that does not allow excitonic states.</description><subject>absorption and emission spectrum</subject><subject>excitation spectrum</subject><subject>excitons</subject><subject>optical properties</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AURQdRMFb3LrMSF8a-N195WUppVai4UMHdMJlMakqaxEwK9t_bWHHl6sLlcLkcxi4RbhGIpig0JlrS-9TmLkvxiEV_1TGLIFMioYzkKTsLYQ0AkoSMGMy_XDX4Ig6DHXyIqyb-2BV9u_KN_amrZlX7pLY738dP7Qs_ZyelrYO_-M0Je1vMX2cPyfL5_nF2t0wqrvSQpCVxjlwqEqnIXW73meXktcO8BCXQcdIp1wW6QueZ1d66wknySEqARDFh14fdrm8_tz4MZlMF5-vaNr7dBsOlBiAY5yfs5oBWbWfW7bZv9scMghnFmNGCGS2Yg5g9fvUP7jZGCJMaSBUHNF1Rim91p2HN</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Din, Naseem Ud</creator><creator>Turkowski, Volodymyr</creator><creator>Rahman, Talat S</creator><general>IOP Publishing</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0762-0002</orcidid><orcidid>https://orcid.org/0000-0003-3889-7776</orcidid><orcidid>https://orcid.org/0000-0002-7972-4057</orcidid></search><sort><creationdate>20210217</creationdate><title>Excited states in hydrogenated single-layer MoS2</title><author>Din, Naseem Ud ; Turkowski, Volodymyr ; Rahman, Talat S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i256t-7f82212458373bcba8379b8e6c1bf0531c286726d1cd6b9a6eacdc48e18530413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>absorption and emission spectrum</topic><topic>excitation spectrum</topic><topic>excitons</topic><topic>optical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Din, Naseem Ud</creatorcontrib><creatorcontrib>Turkowski, Volodymyr</creatorcontrib><creatorcontrib>Rahman, Talat S</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Din, Naseem Ud</au><au>Turkowski, Volodymyr</au><au>Rahman, Talat S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited states in hydrogenated single-layer MoS2</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2021-02-17</date><risdate>2021</risdate><volume>33</volume><issue>7</issue><spage>075201</spage><epage>075201</epage><pages>075201-075201</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Our calculations of the excitation spectrum of single-layer MoS2 at several hydrogen coverages, using a density-matrix based time-dependent density-functional theory (TDDFT) show that the fully hydrogenated system is metallic, while at lower coverages the spectrum consists of spin-polarized partially filled localized mid-gap states. The calculated absorption spectrum of the system reveals standard excitonic peaks corresponding to the bound valence-band hole and conduction-band electron, as well as excitonic peaks that involve the mid-gap states. Binding energies of the excitons of the hydrogenated system are found to be relatively large (few tens of meV), making their experimental detection facile and suggesting hydrogenation as a knob for tuning the optical properties of single-layer MoS2. Importantly, we find hydrogenation to suppress visible light photoluminescence, in agreement with experimental observations. In contrast, both Li and Na atoms transform the system into an n-doped non-magnetic semiconductor that does not allow excitonic states.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-648X/abc971</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0762-0002</orcidid><orcidid>https://orcid.org/0000-0003-3889-7776</orcidid><orcidid>https://orcid.org/0000-0002-7972-4057</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2021-02, Vol.33 (7), p.075201-075201 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_648X_abc971 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | absorption and emission spectrum excitation spectrum excitons optical properties |
title | Excited states in hydrogenated single-layer MoS2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited%20states%20in%20hydrogenated%20single-layer%20MoS2&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Din,%20Naseem%20Ud&rft.date=2021-02-17&rft.volume=33&rft.issue=7&rft.spage=075201&rft.epage=075201&rft.pages=075201-075201&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/abc971&rft_dat=%3Cproquest_iop_j%3E2460080837%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460080837&rft_id=info:pmid/&rfr_iscdi=true |