Strong anisotropy and layer-dependent carrier mobility of two-dimensional semiconductor ZrGeTe4

Layered ZrGeTe4 is a new type of ternary anisotropic semiconductor. The strong in-plane anisotropy may give us another degree of freedom for controlling electrical and optical properties, and designing advanced nanodevices. Using first-principles calculations, physical properties such as band struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2020-07, Vol.32 (32)
Hauptverfasser: Guo, Pengsheng, Liang, Jia, Zhou, Benliang, Wang, Weike, Liu, Ziran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 32
container_start_page
container_title Journal of physics. Condensed matter
container_volume 32
creator Guo, Pengsheng
Liang, Jia
Zhou, Benliang
Wang, Weike
Liu, Ziran
description Layered ZrGeTe4 is a new type of ternary anisotropic semiconductor. The strong in-plane anisotropy may give us another degree of freedom for controlling electrical and optical properties, and designing advanced nanodevices. Using first-principles calculations, physical properties such as band structure, phonon vibration, and carrier mobility of layered ZrGeTe4 from bulk to monolayer were investigated. The bulk and few-layer ZrGeTe4 are predicted as indirect bandgap semiconductors, but the monolayer ZrGeTe4 turns out to be a direct band gap semiconductor with moderate value of 1.08 eV. Electronic structure calculations reveal that the van der Waals interaction is the main reason of causing the transition from indirect band gap to direct one. Phonon calculations demonstrate that the layered ZrGeTe4 is mechanically stable and anisotropic. In orders of magnitude, the predicted average carrier mobility of ZrGeTe4 (∼103 cm2 V−1 s−1) is between that of graphene (∼105) and MoS2 (∼102), and the anisotropy of electronic mobility is similar to that of black phosphorus, while hole mobility varies with the numbers of layers.
doi_str_mv 10.1088/1361-648X/ab808f
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ab808f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378878841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-6085322da8feecaff1fca102e0ff4d87e31a944717a155913319f16f59eb4e3</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOKd3j7npwbqkSdv0KEOnMPCwHcRLyJIXyWiTmrTI_vt1VDwJP3g_Hh-Px4fQLSWPlAixoKykWcnFx0LtBBH2DM3-VudoRuqCZaIW_BJdpbQnhHDB-AzJTR-D_8LKuxTG2h3GanCjDhAzAx14A77HWsXoIOI27Fzj-gMOFvc_ITOuBZ9c8KrBCVqngzeD7kPEn3EFW-DX6MKqJsHN75yjzcvzdvmard9Xb8undaYZ4X1WElGwPDdKWACtrKVWK0pyINZyIypgVNWcV7RStChqyhitLS1tUcOOA5uj--lqF8P3AKmXrUsamkZ5CEOSOauEGMPpiN5NqAud3Ichjq8nqVvJ8ilFQXLZGTuSD_-QlMiTb3mSK09y5eSbHQEkSXSf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378878841</pqid></control><display><type>article</type><title>Strong anisotropy and layer-dependent carrier mobility of two-dimensional semiconductor ZrGeTe4</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Guo, Pengsheng ; Liang, Jia ; Zhou, Benliang ; Wang, Weike ; Liu, Ziran</creator><creatorcontrib>Guo, Pengsheng ; Liang, Jia ; Zhou, Benliang ; Wang, Weike ; Liu, Ziran</creatorcontrib><description>Layered ZrGeTe4 is a new type of ternary anisotropic semiconductor. The strong in-plane anisotropy may give us another degree of freedom for controlling electrical and optical properties, and designing advanced nanodevices. Using first-principles calculations, physical properties such as band structure, phonon vibration, and carrier mobility of layered ZrGeTe4 from bulk to monolayer were investigated. The bulk and few-layer ZrGeTe4 are predicted as indirect bandgap semiconductors, but the monolayer ZrGeTe4 turns out to be a direct band gap semiconductor with moderate value of 1.08 eV. Electronic structure calculations reveal that the van der Waals interaction is the main reason of causing the transition from indirect band gap to direct one. Phonon calculations demonstrate that the layered ZrGeTe4 is mechanically stable and anisotropic. In orders of magnitude, the predicted average carrier mobility of ZrGeTe4 (∼103 cm2 V−1 s−1) is between that of graphene (∼105) and MoS2 (∼102), and the anisotropy of electronic mobility is similar to that of black phosphorus, while hole mobility varies with the numbers of layers.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab808f</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>2D materials ; carrier mobility ; DFT ; Raman ; ternary 2D materials</subject><ispartof>Journal of physics. Condensed matter, 2020-07, Vol.32 (32)</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-6085322da8feecaff1fca102e0ff4d87e31a944717a155913319f16f59eb4e3</citedby><orcidid>0000-0002-8980-7374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab808f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Guo, Pengsheng</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Zhou, Benliang</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Liu, Ziran</creatorcontrib><title>Strong anisotropy and layer-dependent carrier mobility of two-dimensional semiconductor ZrGeTe4</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Layered ZrGeTe4 is a new type of ternary anisotropic semiconductor. The strong in-plane anisotropy may give us another degree of freedom for controlling electrical and optical properties, and designing advanced nanodevices. Using first-principles calculations, physical properties such as band structure, phonon vibration, and carrier mobility of layered ZrGeTe4 from bulk to monolayer were investigated. The bulk and few-layer ZrGeTe4 are predicted as indirect bandgap semiconductors, but the monolayer ZrGeTe4 turns out to be a direct band gap semiconductor with moderate value of 1.08 eV. Electronic structure calculations reveal that the van der Waals interaction is the main reason of causing the transition from indirect band gap to direct one. Phonon calculations demonstrate that the layered ZrGeTe4 is mechanically stable and anisotropic. In orders of magnitude, the predicted average carrier mobility of ZrGeTe4 (∼103 cm2 V−1 s−1) is between that of graphene (∼105) and MoS2 (∼102), and the anisotropy of electronic mobility is similar to that of black phosphorus, while hole mobility varies with the numbers of layers.</description><subject>2D materials</subject><subject>carrier mobility</subject><subject>DFT</subject><subject>Raman</subject><subject>ternary 2D materials</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOKd3j7npwbqkSdv0KEOnMPCwHcRLyJIXyWiTmrTI_vt1VDwJP3g_Hh-Px4fQLSWPlAixoKykWcnFx0LtBBH2DM3-VudoRuqCZaIW_BJdpbQnhHDB-AzJTR-D_8LKuxTG2h3GanCjDhAzAx14A77HWsXoIOI27Fzj-gMOFvc_ITOuBZ9c8KrBCVqngzeD7kPEn3EFW-DX6MKqJsHN75yjzcvzdvmard9Xb8undaYZ4X1WElGwPDdKWACtrKVWK0pyINZyIypgVNWcV7RStChqyhitLS1tUcOOA5uj--lqF8P3AKmXrUsamkZ5CEOSOauEGMPpiN5NqAud3Ichjq8nqVvJ8ilFQXLZGTuSD_-QlMiTb3mSK09y5eSbHQEkSXSf</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Guo, Pengsheng</creator><creator>Liang, Jia</creator><creator>Zhou, Benliang</creator><creator>Wang, Weike</creator><creator>Liu, Ziran</creator><general>IOP Publishing</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8980-7374</orcidid></search><sort><creationdate>20200729</creationdate><title>Strong anisotropy and layer-dependent carrier mobility of two-dimensional semiconductor ZrGeTe4</title><author>Guo, Pengsheng ; Liang, Jia ; Zhou, Benliang ; Wang, Weike ; Liu, Ziran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-6085322da8feecaff1fca102e0ff4d87e31a944717a155913319f16f59eb4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>carrier mobility</topic><topic>DFT</topic><topic>Raman</topic><topic>ternary 2D materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Pengsheng</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Zhou, Benliang</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Liu, Ziran</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Pengsheng</au><au>Liang, Jia</au><au>Zhou, Benliang</au><au>Wang, Weike</au><au>Liu, Ziran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong anisotropy and layer-dependent carrier mobility of two-dimensional semiconductor ZrGeTe4</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2020-07-29</date><risdate>2020</risdate><volume>32</volume><issue>32</issue><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Layered ZrGeTe4 is a new type of ternary anisotropic semiconductor. The strong in-plane anisotropy may give us another degree of freedom for controlling electrical and optical properties, and designing advanced nanodevices. Using first-principles calculations, physical properties such as band structure, phonon vibration, and carrier mobility of layered ZrGeTe4 from bulk to monolayer were investigated. The bulk and few-layer ZrGeTe4 are predicted as indirect bandgap semiconductors, but the monolayer ZrGeTe4 turns out to be a direct band gap semiconductor with moderate value of 1.08 eV. Electronic structure calculations reveal that the van der Waals interaction is the main reason of causing the transition from indirect band gap to direct one. Phonon calculations demonstrate that the layered ZrGeTe4 is mechanically stable and anisotropic. In orders of magnitude, the predicted average carrier mobility of ZrGeTe4 (∼103 cm2 V−1 s−1) is between that of graphene (∼105) and MoS2 (∼102), and the anisotropy of electronic mobility is similar to that of black phosphorus, while hole mobility varies with the numbers of layers.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-648X/ab808f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8980-7374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2020-07, Vol.32 (32)
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ab808f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 2D materials
carrier mobility
DFT
Raman
ternary 2D materials
title Strong anisotropy and layer-dependent carrier mobility of two-dimensional semiconductor ZrGeTe4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20anisotropy%20and%20layer-dependent%20carrier%20mobility%20of%20two-dimensional%20semiconductor%20ZrGeTe4&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Guo,%20Pengsheng&rft.date=2020-07-29&rft.volume=32&rft.issue=32&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab808f&rft_dat=%3Cproquest_iop_j%3E2378878841%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378878841&rft_id=info:pmid/&rfr_iscdi=true