CLEASE: a versatile and user-friendly implementation of cluster expansion method

Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-08, Vol.31 (32), p.325901-325901
Hauptverfasser: Chang, Jin Hyun, Kleiven, David, Melander, Marko, Akola, Jaakko, Garcia-Lastra, Juan Maria, Vegge, Tejs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325901
container_issue 32
container_start_page 325901
container_title Journal of physics. Condensed matter
container_volume 31
creator Chang, Jin Hyun
Kleiven, David
Melander, Marko
Akola, Jaakko
Garcia-Lastra, Juan Maria
Vegge, Tejs
description Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.
doi_str_mv 10.1088/1361-648X/ab1bbc
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ab1bbc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213928006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vniRHD9YlTdql3saYP2CgoIK3kDQv2NE2NWnF_fe2dO7m6cHj8_3y3gehS0puKRFiTllKo5SLj7nSVOv8CE0Pq2M0JVnCIpEJPkFnIWwJIVwwfoomjBLKuFhM0ctqs16-ru-wwt_gg2qLErCqDe4C-Mj6AmpT7nBRNSVUULc94GrsLM7LLrTgMfw0qg7DsoL205lzdGJVGeBiP2fo_X79tnqMNs8PT6vlJsp5RtuIZ7FKEiW4yPOF6u-xKdg4S1NjE62F6d-jXLPEwEKbBaUCVKYEscpQnVCh2Qxdj72Nd18dhFZWRcihLFUNrgsyjinLYkFI2qNkRHPvQvBgZeOLSvmdpEQOHuUgTQ7S5Oixj1zt2ztdgTkE_sT1wM0IFK6RW9f5un_2_75fos99pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213928006</pqid></control><display><type>article</type><title>CLEASE: a versatile and user-friendly implementation of cluster expansion method</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chang, Jin Hyun ; Kleiven, David ; Melander, Marko ; Akola, Jaakko ; Garcia-Lastra, Juan Maria ; Vegge, Tejs</creator><creatorcontrib>Chang, Jin Hyun ; Kleiven, David ; Melander, Marko ; Akola, Jaakko ; Garcia-Lastra, Juan Maria ; Vegge, Tejs</creatorcontrib><description>Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab1bbc</identifier><identifier>PMID: 31013487</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>alloys ; battery material ; cluster expansion ; disordered materials ; Monte Carlo</subject><ispartof>Journal of physics. Condensed matter, 2019-08, Vol.31 (32), p.325901-325901</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</citedby><cites>FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</cites><orcidid>0000-0001-5311-3656 ; 0000-0002-1484-0284 ; 0000-0003-0668-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab1bbc/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31013487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Jin Hyun</creatorcontrib><creatorcontrib>Kleiven, David</creatorcontrib><creatorcontrib>Melander, Marko</creatorcontrib><creatorcontrib>Akola, Jaakko</creatorcontrib><creatorcontrib>Garcia-Lastra, Juan Maria</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><title>CLEASE: a versatile and user-friendly implementation of cluster expansion method</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.</description><subject>alloys</subject><subject>battery material</subject><subject>cluster expansion</subject><subject>disordered materials</subject><subject>Monte Carlo</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAUx4Mobk7vniRHD9YlTdql3saYP2CgoIK3kDQv2NE2NWnF_fe2dO7m6cHj8_3y3gehS0puKRFiTllKo5SLj7nSVOv8CE0Pq2M0JVnCIpEJPkFnIWwJIVwwfoomjBLKuFhM0ctqs16-ru-wwt_gg2qLErCqDe4C-Mj6AmpT7nBRNSVUULc94GrsLM7LLrTgMfw0qg7DsoL205lzdGJVGeBiP2fo_X79tnqMNs8PT6vlJsp5RtuIZ7FKEiW4yPOF6u-xKdg4S1NjE62F6d-jXLPEwEKbBaUCVKYEscpQnVCh2Qxdj72Nd18dhFZWRcihLFUNrgsyjinLYkFI2qNkRHPvQvBgZeOLSvmdpEQOHuUgTQ7S5Oixj1zt2ztdgTkE_sT1wM0IFK6RW9f5un_2_75fos99pg</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Chang, Jin Hyun</creator><creator>Kleiven, David</creator><creator>Melander, Marko</creator><creator>Akola, Jaakko</creator><creator>Garcia-Lastra, Juan Maria</creator><creator>Vegge, Tejs</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5311-3656</orcidid><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0003-0668-4530</orcidid></search><sort><creationdate>20190814</creationdate><title>CLEASE: a versatile and user-friendly implementation of cluster expansion method</title><author>Chang, Jin Hyun ; Kleiven, David ; Melander, Marko ; Akola, Jaakko ; Garcia-Lastra, Juan Maria ; Vegge, Tejs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>alloys</topic><topic>battery material</topic><topic>cluster expansion</topic><topic>disordered materials</topic><topic>Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jin Hyun</creatorcontrib><creatorcontrib>Kleiven, David</creatorcontrib><creatorcontrib>Melander, Marko</creatorcontrib><creatorcontrib>Akola, Jaakko</creatorcontrib><creatorcontrib>Garcia-Lastra, Juan Maria</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Jin Hyun</au><au>Kleiven, David</au><au>Melander, Marko</au><au>Akola, Jaakko</au><au>Garcia-Lastra, Juan Maria</au><au>Vegge, Tejs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLEASE: a versatile and user-friendly implementation of cluster expansion method</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>31</volume><issue>32</issue><spage>325901</spage><epage>325901</epage><pages>325901-325901</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31013487</pmid><doi>10.1088/1361-648X/ab1bbc</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5311-3656</orcidid><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0003-0668-4530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-08, Vol.31 (32), p.325901-325901
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ab1bbc
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects alloys
battery material
cluster expansion
disordered materials
Monte Carlo
title CLEASE: a versatile and user-friendly implementation of cluster expansion method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLEASE:%20a%20versatile%20and%20user-friendly%20implementation%20of%20cluster%20expansion%20method&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Chang,%20Jin%20Hyun&rft.date=2019-08-14&rft.volume=31&rft.issue=32&rft.spage=325901&rft.epage=325901&rft.pages=325901-325901&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab1bbc&rft_dat=%3Cproquest_iop_j%3E2213928006%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213928006&rft_id=info:pmid/31013487&rfr_iscdi=true