CLEASE: a versatile and user-friendly implementation of cluster expansion method
Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2019-08, Vol.31 (32), p.325901-325901 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 325901 |
---|---|
container_issue | 32 |
container_start_page | 325901 |
container_title | Journal of physics. Condensed matter |
container_volume | 31 |
creator | Chang, Jin Hyun Kleiven, David Melander, Marko Akola, Jaakko Garcia-Lastra, Juan Maria Vegge, Tejs |
description | Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride. |
doi_str_mv | 10.1088/1361-648X/ab1bbc |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ab1bbc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213928006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vniRHD9YlTdql3saYP2CgoIK3kDQv2NE2NWnF_fe2dO7m6cHj8_3y3gehS0puKRFiTllKo5SLj7nSVOv8CE0Pq2M0JVnCIpEJPkFnIWwJIVwwfoomjBLKuFhM0ctqs16-ru-wwt_gg2qLErCqDe4C-Mj6AmpT7nBRNSVUULc94GrsLM7LLrTgMfw0qg7DsoL205lzdGJVGeBiP2fo_X79tnqMNs8PT6vlJsp5RtuIZ7FKEiW4yPOF6u-xKdg4S1NjE62F6d-jXLPEwEKbBaUCVKYEscpQnVCh2Qxdj72Nd18dhFZWRcihLFUNrgsyjinLYkFI2qNkRHPvQvBgZeOLSvmdpEQOHuUgTQ7S5Oixj1zt2ztdgTkE_sT1wM0IFK6RW9f5un_2_75fos99pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213928006</pqid></control><display><type>article</type><title>CLEASE: a versatile and user-friendly implementation of cluster expansion method</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chang, Jin Hyun ; Kleiven, David ; Melander, Marko ; Akola, Jaakko ; Garcia-Lastra, Juan Maria ; Vegge, Tejs</creator><creatorcontrib>Chang, Jin Hyun ; Kleiven, David ; Melander, Marko ; Akola, Jaakko ; Garcia-Lastra, Juan Maria ; Vegge, Tejs</creatorcontrib><description>Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab1bbc</identifier><identifier>PMID: 31013487</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>alloys ; battery material ; cluster expansion ; disordered materials ; Monte Carlo</subject><ispartof>Journal of physics. Condensed matter, 2019-08, Vol.31 (32), p.325901-325901</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</citedby><cites>FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</cites><orcidid>0000-0001-5311-3656 ; 0000-0002-1484-0284 ; 0000-0003-0668-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab1bbc/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31013487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Jin Hyun</creatorcontrib><creatorcontrib>Kleiven, David</creatorcontrib><creatorcontrib>Melander, Marko</creatorcontrib><creatorcontrib>Akola, Jaakko</creatorcontrib><creatorcontrib>Garcia-Lastra, Juan Maria</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><title>CLEASE: a versatile and user-friendly implementation of cluster expansion method</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.</description><subject>alloys</subject><subject>battery material</subject><subject>cluster expansion</subject><subject>disordered materials</subject><subject>Monte Carlo</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAUx4Mobk7vniRHD9YlTdql3saYP2CgoIK3kDQv2NE2NWnF_fe2dO7m6cHj8_3y3gehS0puKRFiTllKo5SLj7nSVOv8CE0Pq2M0JVnCIpEJPkFnIWwJIVwwfoomjBLKuFhM0ctqs16-ru-wwt_gg2qLErCqDe4C-Mj6AmpT7nBRNSVUULc94GrsLM7LLrTgMfw0qg7DsoL205lzdGJVGeBiP2fo_X79tnqMNs8PT6vlJsp5RtuIZ7FKEiW4yPOF6u-xKdg4S1NjE62F6d-jXLPEwEKbBaUCVKYEscpQnVCh2Qxdj72Nd18dhFZWRcihLFUNrgsyjinLYkFI2qNkRHPvQvBgZeOLSvmdpEQOHuUgTQ7S5Oixj1zt2ztdgTkE_sT1wM0IFK6RW9f5un_2_75fos99pg</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Chang, Jin Hyun</creator><creator>Kleiven, David</creator><creator>Melander, Marko</creator><creator>Akola, Jaakko</creator><creator>Garcia-Lastra, Juan Maria</creator><creator>Vegge, Tejs</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5311-3656</orcidid><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0003-0668-4530</orcidid></search><sort><creationdate>20190814</creationdate><title>CLEASE: a versatile and user-friendly implementation of cluster expansion method</title><author>Chang, Jin Hyun ; Kleiven, David ; Melander, Marko ; Akola, Jaakko ; Garcia-Lastra, Juan Maria ; Vegge, Tejs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-492a55a848cc7a310f6ef2966df5bb8d10814b35de7bd7118ea9a80fad1b518b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>alloys</topic><topic>battery material</topic><topic>cluster expansion</topic><topic>disordered materials</topic><topic>Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jin Hyun</creatorcontrib><creatorcontrib>Kleiven, David</creatorcontrib><creatorcontrib>Melander, Marko</creatorcontrib><creatorcontrib>Akola, Jaakko</creatorcontrib><creatorcontrib>Garcia-Lastra, Juan Maria</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Jin Hyun</au><au>Kleiven, David</au><au>Melander, Marko</au><au>Akola, Jaakko</au><au>Garcia-Lastra, Juan Maria</au><au>Vegge, Tejs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLEASE: a versatile and user-friendly implementation of cluster expansion method</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>31</volume><issue>32</issue><spage>325901</spage><epage>325901</epage><pages>325901-325901</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31013487</pmid><doi>10.1088/1361-648X/ab1bbc</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5311-3656</orcidid><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0003-0668-4530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2019-08, Vol.31 (32), p.325901-325901 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_648X_ab1bbc |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | alloys battery material cluster expansion disordered materials Monte Carlo |
title | CLEASE: a versatile and user-friendly implementation of cluster expansion method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLEASE:%20a%20versatile%20and%20user-friendly%20implementation%20of%20cluster%20expansion%20method&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Chang,%20Jin%20Hyun&rft.date=2019-08-14&rft.volume=31&rft.issue=32&rft.spage=325901&rft.epage=325901&rft.pages=325901-325901&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab1bbc&rft_dat=%3Cproquest_iop_j%3E2213928006%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2213928006&rft_id=info:pmid/31013487&rfr_iscdi=true |