Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field

Tunnelling of electrons in graphene-based junctions is studied theoretically. Graphene is assumed to be deposited either directly on a ferromagnetic insulator or on a few atomic layers of boron nitride which separate graphene from a metallic ferromagnetic substrate. Such junctions can be formed by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-06, Vol.31 (22), p.225302-225302
Hauptverfasser: Tepper, J, Barna, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225302
container_issue 22
container_start_page 225302
container_title Journal of physics. Condensed matter
container_volume 31
creator Tepper, J
Barna, J
description Tunnelling of electrons in graphene-based junctions is studied theoretically. Graphene is assumed to be deposited either directly on a ferromagnetic insulator or on a few atomic layers of boron nitride which separate graphene from a metallic ferromagnetic substrate. Such junctions can be formed by appropriate external gating of the corresponding system. To describe low-energy electronic states near the Dirac points, certain effective Hamiltonians available in the relevant literature are used. These Hamiltonians include staggered potential and exchange interaction due to ferromagnetic substrates. Tunnelling in the systems under consideration is then spin-dependent. The main focus is on Klein tunnelling and also on the group delay and the associated Hartman effect. The impact of a gap induced in the spectrum at the Dirac points on tunnelling is analysed in detail.
doi_str_mv 10.1088/1361-648X/ab0b20
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ab0b20</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187022663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2fede6015caac21add3c4783fa6735e435be142bcdf101144efc7cfe05f0fe6d3</originalsourceid><addsrcrecordid>eNp9kMtLxDAQh4Mouj7uniQ3PVidPNqNR1l8oeBF0VtIk8luljatTYv639tl1ZMIAwPDNz9mPkIOGZwxUOqciYJlhVSv56aEksMGmfyONskELnKRqQsld8huSksAkErIbbIjQDEOHCbk5b7CEGk_xIhVFeKcmujoren62kSK3qPt6QjMO9MuMCJdDtH2oYmJvod-Qduu-Qh16D8pftiFiXOkPmDl9smWN1XCg---R56vr55mt9nD483d7PIhs6JQfcY9OiyA5dYYy5lxTlg5VcKbYipylCIvkUleWucZMCYleju1HiH34LFwYo-crHPHQ94GTL2uQ7LjKyZiMyTNmZoC50UhRhTWqO2alDr0uu1CbbpPzUCvdOqVO71yp9c6x5Wj7_ShrNH9Lvz4G4HTNRCaVi-boYvjs__lHf-B21oLpjkfKxfAdeu8-AKrN41j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187022663</pqid></control><display><type>article</type><title>Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tepper, J ; Barna, J</creator><creatorcontrib>Tepper, J ; Barna, J</creatorcontrib><description>Tunnelling of electrons in graphene-based junctions is studied theoretically. Graphene is assumed to be deposited either directly on a ferromagnetic insulator or on a few atomic layers of boron nitride which separate graphene from a metallic ferromagnetic substrate. Such junctions can be formed by appropriate external gating of the corresponding system. To describe low-energy electronic states near the Dirac points, certain effective Hamiltonians available in the relevant literature are used. These Hamiltonians include staggered potential and exchange interaction due to ferromagnetic substrates. Tunnelling in the systems under consideration is then spin-dependent. The main focus is on Klein tunnelling and also on the group delay and the associated Hartman effect. The impact of a gap induced in the spectrum at the Dirac points on tunnelling is analysed in detail.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab0b20</identifier><identifier>PMID: 30812020</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>graphene-based junctions ; Hartman effect ; Klein tunnelling ; proximity exchange coupling</subject><ispartof>Journal of physics. Condensed matter, 2019-06, Vol.31 (22), p.225302-225302</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>2019 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2fede6015caac21add3c4783fa6735e435be142bcdf101144efc7cfe05f0fe6d3</citedby><cites>FETCH-LOGICAL-c368t-2fede6015caac21add3c4783fa6735e435be142bcdf101144efc7cfe05f0fe6d3</cites><orcidid>0000-0002-4841-1170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab0b20/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30812020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tepper, J</creatorcontrib><creatorcontrib>Barna, J</creatorcontrib><title>Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Tunnelling of electrons in graphene-based junctions is studied theoretically. Graphene is assumed to be deposited either directly on a ferromagnetic insulator or on a few atomic layers of boron nitride which separate graphene from a metallic ferromagnetic substrate. Such junctions can be formed by appropriate external gating of the corresponding system. To describe low-energy electronic states near the Dirac points, certain effective Hamiltonians available in the relevant literature are used. These Hamiltonians include staggered potential and exchange interaction due to ferromagnetic substrates. Tunnelling in the systems under consideration is then spin-dependent. The main focus is on Klein tunnelling and also on the group delay and the associated Hartman effect. The impact of a gap induced in the spectrum at the Dirac points on tunnelling is analysed in detail.</description><subject>graphene-based junctions</subject><subject>Hartman effect</subject><subject>Klein tunnelling</subject><subject>proximity exchange coupling</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQh4Mouj7uniQ3PVidPNqNR1l8oeBF0VtIk8luljatTYv639tl1ZMIAwPDNz9mPkIOGZwxUOqciYJlhVSv56aEksMGmfyONskELnKRqQsld8huSksAkErIbbIjQDEOHCbk5b7CEGk_xIhVFeKcmujoren62kSK3qPt6QjMO9MuMCJdDtH2oYmJvod-Qduu-Qh16D8pftiFiXOkPmDl9smWN1XCg---R56vr55mt9nD483d7PIhs6JQfcY9OiyA5dYYy5lxTlg5VcKbYipylCIvkUleWucZMCYleju1HiH34LFwYo-crHPHQ94GTL2uQ7LjKyZiMyTNmZoC50UhRhTWqO2alDr0uu1CbbpPzUCvdOqVO71yp9c6x5Wj7_ShrNH9Lvz4G4HTNRCaVi-boYvjs__lHf-B21oLpjkfKxfAdeu8-AKrN41j</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Tepper, J</creator><creator>Barna, J</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4841-1170</orcidid></search><sort><creationdate>20190605</creationdate><title>Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field</title><author>Tepper, J ; Barna, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2fede6015caac21add3c4783fa6735e435be142bcdf101144efc7cfe05f0fe6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>graphene-based junctions</topic><topic>Hartman effect</topic><topic>Klein tunnelling</topic><topic>proximity exchange coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tepper, J</creatorcontrib><creatorcontrib>Barna, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tepper, J</au><au>Barna, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-06-05</date><risdate>2019</risdate><volume>31</volume><issue>22</issue><spage>225302</spage><epage>225302</epage><pages>225302-225302</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Tunnelling of electrons in graphene-based junctions is studied theoretically. Graphene is assumed to be deposited either directly on a ferromagnetic insulator or on a few atomic layers of boron nitride which separate graphene from a metallic ferromagnetic substrate. Such junctions can be formed by appropriate external gating of the corresponding system. To describe low-energy electronic states near the Dirac points, certain effective Hamiltonians available in the relevant literature are used. These Hamiltonians include staggered potential and exchange interaction due to ferromagnetic substrates. Tunnelling in the systems under consideration is then spin-dependent. The main focus is on Klein tunnelling and also on the group delay and the associated Hartman effect. The impact of a gap induced in the spectrum at the Dirac points on tunnelling is analysed in detail.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30812020</pmid><doi>10.1088/1361-648X/ab0b20</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4841-1170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-06, Vol.31 (22), p.225302-225302
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ab0b20
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects graphene-based junctions
Hartman effect
Klein tunnelling
proximity exchange coupling
title Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Klein%20tunnelling%20and%20Hartman%20effect%20in%20graphene%20junctions%20with%20proximity%20exchange%20field&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Tepper,%20J&rft.date=2019-06-05&rft.volume=31&rft.issue=22&rft.spage=225302&rft.epage=225302&rft.pages=225302-225302&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab0b20&rft_dat=%3Cproquest_iop_j%3E2187022663%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187022663&rft_id=info:pmid/30812020&rfr_iscdi=true