Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals

Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Gre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-03, Vol.31 (10), p.104001-104001
1. Verfasser: Parameswaran, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104001
container_issue 10
container_start_page 104001
container_title Journal of physics. Condensed matter
container_volume 31
creator Parameswaran, S A
description Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.
doi_str_mv 10.1088/1361-648X/aaf214
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_aaf214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155887116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqS3ebAuadI2PcrwFwxEmOAtvKbJzGiTmrTC_ns7Onfz9OW99_1-4X0Quib4nmDOF4RmJM4Y_1wA6ISwEzQ9rk7RFBcpjXnB2QRdhLDFGDNO2TmaUJwmDBM6Re9r17rabYyEOpqv-q4zdqP8PDL2B7wB24VIOx9pU9fDJVZ2mKSqIutsHHZN43z7ZWQUVGMa1UEdLtGZHkRdHXSGPp4e18uXePX2_Lp8WMWS0qyLFZOAOZCs0pQWijGWVzKHpIKklGlZsjSpJM408BxDgWUlWSFLUmaykEBVQmfoduxtvfvuVehEY4JUdQ1WuT6IhKQp5zkh2WDFo1V6F4JXWrTeNOB3gmCxByn21MSemhhBDpGbQ3tfNqo6Bv7IDYa70WBcK7au93Z49v--X4gyfro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155887116</pqid></control><display><type>article</type><title>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Parameswaran, S A</creator><creatorcontrib>Parameswaran, S A</creatorcontrib><description>Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/aaf214</identifier><identifier>PMID: 30524013</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>strongly correlated electronic systems ; topological aspects of condensed matter ; topological semimetals</subject><ispartof>Journal of physics. Condensed matter, 2019-03, Vol.31 (10), p.104001-104001</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>2018 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</citedby><cites>FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</cites><orcidid>0000-0002-5055-5528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/aaf214/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30524013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parameswaran, S A</creatorcontrib><title>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.</description><subject>strongly correlated electronic systems</subject><subject>topological aspects of condensed matter</subject><subject>topological semimetals</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqS3ebAuadI2PcrwFwxEmOAtvKbJzGiTmrTC_ns7Onfz9OW99_1-4X0Quib4nmDOF4RmJM4Y_1wA6ISwEzQ9rk7RFBcpjXnB2QRdhLDFGDNO2TmaUJwmDBM6Re9r17rabYyEOpqv-q4zdqP8PDL2B7wB24VIOx9pU9fDJVZ2mKSqIutsHHZN43z7ZWQUVGMa1UEdLtGZHkRdHXSGPp4e18uXePX2_Lp8WMWS0qyLFZOAOZCs0pQWijGWVzKHpIKklGlZsjSpJM408BxDgWUlWSFLUmaykEBVQmfoduxtvfvuVehEY4JUdQ1WuT6IhKQp5zkh2WDFo1V6F4JXWrTeNOB3gmCxByn21MSemhhBDpGbQ3tfNqo6Bv7IDYa70WBcK7au93Z49v--X4gyfro</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Parameswaran, S A</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5055-5528</orcidid></search><sort><creationdate>20190313</creationdate><title>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</title><author>Parameswaran, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>strongly correlated electronic systems</topic><topic>topological aspects of condensed matter</topic><topic>topological semimetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parameswaran, S A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parameswaran, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>31</volume><issue>10</issue><spage>104001</spage><epage>104001</epage><pages>104001-104001</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30524013</pmid><doi>10.1088/1361-648X/aaf214</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5055-5528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-03, Vol.31 (10), p.104001-104001
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_aaf214
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects strongly correlated electronic systems
topological aspects of condensed matter
topological semimetals
title Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20'Luttinger'%20invariants%20for%20filling-enforced%20non-symmorphic%20semimetals&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Parameswaran,%20S%20A&rft.date=2019-03-13&rft.volume=31&rft.issue=10&rft.spage=104001&rft.epage=104001&rft.pages=104001-104001&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/aaf214&rft_dat=%3Cproquest_iop_j%3E2155887116%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155887116&rft_id=info:pmid/30524013&rfr_iscdi=true