Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals
Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Gre...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2019-03, Vol.31 (10), p.104001-104001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104001 |
---|---|
container_issue | 10 |
container_start_page | 104001 |
container_title | Journal of physics. Condensed matter |
container_volume | 31 |
creator | Parameswaran, S A |
description | Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals. |
doi_str_mv | 10.1088/1361-648X/aaf214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_aaf214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155887116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqS3ebAuadI2PcrwFwxEmOAtvKbJzGiTmrTC_ns7Onfz9OW99_1-4X0Quib4nmDOF4RmJM4Y_1wA6ISwEzQ9rk7RFBcpjXnB2QRdhLDFGDNO2TmaUJwmDBM6Re9r17rabYyEOpqv-q4zdqP8PDL2B7wB24VIOx9pU9fDJVZ2mKSqIutsHHZN43z7ZWQUVGMa1UEdLtGZHkRdHXSGPp4e18uXePX2_Lp8WMWS0qyLFZOAOZCs0pQWijGWVzKHpIKklGlZsjSpJM408BxDgWUlWSFLUmaykEBVQmfoduxtvfvuVehEY4JUdQ1WuT6IhKQp5zkh2WDFo1V6F4JXWrTeNOB3gmCxByn21MSemhhBDpGbQ3tfNqo6Bv7IDYa70WBcK7au93Z49v--X4gyfro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155887116</pqid></control><display><type>article</type><title>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Parameswaran, S A</creator><creatorcontrib>Parameswaran, S A</creatorcontrib><description>Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/aaf214</identifier><identifier>PMID: 30524013</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>strongly correlated electronic systems ; topological aspects of condensed matter ; topological semimetals</subject><ispartof>Journal of physics. Condensed matter, 2019-03, Vol.31 (10), p.104001-104001</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>2018 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</citedby><cites>FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</cites><orcidid>0000-0002-5055-5528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/aaf214/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30524013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parameswaran, S A</creatorcontrib><title>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.</description><subject>strongly correlated electronic systems</subject><subject>topological aspects of condensed matter</subject><subject>topological semimetals</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqS3ebAuadI2PcrwFwxEmOAtvKbJzGiTmrTC_ns7Onfz9OW99_1-4X0Quib4nmDOF4RmJM4Y_1wA6ISwEzQ9rk7RFBcpjXnB2QRdhLDFGDNO2TmaUJwmDBM6Re9r17rabYyEOpqv-q4zdqP8PDL2B7wB24VIOx9pU9fDJVZ2mKSqIutsHHZN43z7ZWQUVGMa1UEdLtGZHkRdHXSGPp4e18uXePX2_Lp8WMWS0qyLFZOAOZCs0pQWijGWVzKHpIKklGlZsjSpJM408BxDgWUlWSFLUmaykEBVQmfoduxtvfvuVehEY4JUdQ1WuT6IhKQp5zkh2WDFo1V6F4JXWrTeNOB3gmCxByn21MSemhhBDpGbQ3tfNqo6Bv7IDYa70WBcK7au93Z49v--X4gyfro</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Parameswaran, S A</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5055-5528</orcidid></search><sort><creationdate>20190313</creationdate><title>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</title><author>Parameswaran, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e4ca08a16df339e4447dc7a2da2bc5bb452dc06fa870a90cdc49cb1b6c9ca3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>strongly correlated electronic systems</topic><topic>topological aspects of condensed matter</topic><topic>topological semimetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parameswaran, S A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parameswaran, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>31</volume><issue>10</issue><spage>104001</spage><epage>104001</epage><pages>104001-104001</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Luttinger's theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified in terms of analytic properties of Green's functions, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum (Oshikawa 2000 Phys. Rev. Lett. 84 3370). This reveals that the Fermi volume is a topologically protected quantity, whose change requires a phase transition. However, this sheds no light on the stability or lack thereof of interacting semimetals, that either lack a Fermi surface, or have perfectly compensated electron and hole pockets and hence vanishing net Fermi volume. Here, I show that semimetallic phases in non-symmorphic crystals possess additional topological 'Luttinger invariants' that can be nonzero even though the Fermi volume vanishes. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30524013</pmid><doi>10.1088/1361-648X/aaf214</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5055-5528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2019-03, Vol.31 (10), p.104001-104001 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_648X_aaf214 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | strongly correlated electronic systems topological aspects of condensed matter topological semimetals |
title | Topological 'Luttinger' invariants for filling-enforced non-symmorphic semimetals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20'Luttinger'%20invariants%20for%20filling-enforced%20non-symmorphic%20semimetals&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Parameswaran,%20S%20A&rft.date=2019-03-13&rft.volume=31&rft.issue=10&rft.spage=104001&rft.epage=104001&rft.pages=104001-104001&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/aaf214&rft_dat=%3Cproquest_iop_j%3E2155887116%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155887116&rft_id=info:pmid/30524013&rfr_iscdi=true |