The race to the bottom: approaching the ideal glass?
Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advance...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2018-09, Vol.30 (36), p.363001-363001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363001 |
---|---|
container_issue | 36 |
container_start_page | 363001 |
container_title | Journal of physics. Condensed matter |
container_volume | 30 |
creator | Royall, C Patrick Turci, Francesco Tatsumi, Soichi Russo, John Robinson, Joshua |
description | Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass. |
doi_str_mv | 10.1088/1361-648X/aad10a |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_aad10a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064247981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMotlbvnmRvenDt5GOziReR4hcUvFTwFtJstt2y26zJ7sH_3tStnkQYmOHxm8fMQ-gcww0GIaaYcpxyJt6nWhcY9AEa_0qHaAwyo6mQgo3QSQgbAGCCsmM0IlLmBLNsjNhibROvjU06l3RxXrquc81totvWO23W1Xb1rVeF1XWyqnUId6foqNR1sGf7PkFvjw-L2XM6f316md3PU8ME7lIqQRTALDBiYCmhzDJCJSMiqkRbw2xexLt5biwrRWk4SFtInGsOgLWUdIKuBt94ykdvQ6eaKhhb13prXR8UAc4Iy6XAEYUBNd6F4G2pWl812n8qDGqXldoFo3bBqCGruHKxd--XjS1-F37CicD1AFSuVRvX-2189j-_yz9w0ygKivJYNL6l2qKkX2btfoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064247981</pqid></control><display><type>article</type><title>The race to the bottom: approaching the ideal glass?</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Royall, C Patrick ; Turci, Francesco ; Tatsumi, Soichi ; Russo, John ; Robinson, Joshua</creator><creatorcontrib>Royall, C Patrick ; Turci, Francesco ; Tatsumi, Soichi ; Russo, John ; Robinson, Joshua</creatorcontrib><description>Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/aad10a</identifier><identifier>PMID: 29972145</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>aging ; energy landscape ; glass transition ; Kauzmann temperature ; ultrastable glass</subject><ispartof>Journal of physics. Condensed matter, 2018-09, Vol.30 (36), p.363001-363001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</citedby><cites>FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</cites><orcidid>0000-0002-0687-0715 ; 0000-0001-7247-8685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/aad10a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29972145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Royall, C Patrick</creatorcontrib><creatorcontrib>Turci, Francesco</creatorcontrib><creatorcontrib>Tatsumi, Soichi</creatorcontrib><creatorcontrib>Russo, John</creatorcontrib><creatorcontrib>Robinson, Joshua</creatorcontrib><title>The race to the bottom: approaching the ideal glass?</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.</description><subject>aging</subject><subject>energy landscape</subject><subject>glass transition</subject><subject>Kauzmann temperature</subject><subject>ultrastable glass</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMotlbvnmRvenDt5GOziReR4hcUvFTwFtJstt2y26zJ7sH_3tStnkQYmOHxm8fMQ-gcww0GIaaYcpxyJt6nWhcY9AEa_0qHaAwyo6mQgo3QSQgbAGCCsmM0IlLmBLNsjNhibROvjU06l3RxXrquc81totvWO23W1Xb1rVeF1XWyqnUId6foqNR1sGf7PkFvjw-L2XM6f316md3PU8ME7lIqQRTALDBiYCmhzDJCJSMiqkRbw2xexLt5biwrRWk4SFtInGsOgLWUdIKuBt94ykdvQ6eaKhhb13prXR8UAc4Iy6XAEYUBNd6F4G2pWl812n8qDGqXldoFo3bBqCGruHKxd--XjS1-F37CicD1AFSuVRvX-2189j-_yz9w0ygKivJYNL6l2qKkX2btfoI</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Royall, C Patrick</creator><creator>Turci, Francesco</creator><creator>Tatsumi, Soichi</creator><creator>Russo, John</creator><creator>Robinson, Joshua</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0687-0715</orcidid><orcidid>https://orcid.org/0000-0001-7247-8685</orcidid></search><sort><creationdate>20180912</creationdate><title>The race to the bottom: approaching the ideal glass?</title><author>Royall, C Patrick ; Turci, Francesco ; Tatsumi, Soichi ; Russo, John ; Robinson, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aging</topic><topic>energy landscape</topic><topic>glass transition</topic><topic>Kauzmann temperature</topic><topic>ultrastable glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Royall, C Patrick</creatorcontrib><creatorcontrib>Turci, Francesco</creatorcontrib><creatorcontrib>Tatsumi, Soichi</creatorcontrib><creatorcontrib>Russo, John</creatorcontrib><creatorcontrib>Robinson, Joshua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Royall, C Patrick</au><au>Turci, Francesco</au><au>Tatsumi, Soichi</au><au>Russo, John</au><au>Robinson, Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The race to the bottom: approaching the ideal glass?</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2018-09-12</date><risdate>2018</risdate><volume>30</volume><issue>36</issue><spage>363001</spage><epage>363001</epage><pages>363001-363001</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29972145</pmid><doi>10.1088/1361-648X/aad10a</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0687-0715</orcidid><orcidid>https://orcid.org/0000-0001-7247-8685</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2018-09, Vol.30 (36), p.363001-363001 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_648X_aad10a |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | aging energy landscape glass transition Kauzmann temperature ultrastable glass |
title | The race to the bottom: approaching the ideal glass? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20race%20to%20the%20bottom:%20approaching%20the%20ideal%20glass?&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Royall,%20C%20Patrick&rft.date=2018-09-12&rft.volume=30&rft.issue=36&rft.spage=363001&rft.epage=363001&rft.pages=363001-363001&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/aad10a&rft_dat=%3Cproquest_iop_j%3E2064247981%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064247981&rft_id=info:pmid/29972145&rfr_iscdi=true |