The race to the bottom: approaching the ideal glass?

Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2018-09, Vol.30 (36), p.363001-363001
Hauptverfasser: Royall, C Patrick, Turci, Francesco, Tatsumi, Soichi, Russo, John, Robinson, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363001
container_issue 36
container_start_page 363001
container_title Journal of physics. Condensed matter
container_volume 30
creator Royall, C Patrick
Turci, Francesco
Tatsumi, Soichi
Russo, John
Robinson, Joshua
description Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.
doi_str_mv 10.1088/1361-648X/aad10a
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_aad10a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064247981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMotlbvnmRvenDt5GOziReR4hcUvFTwFtJstt2y26zJ7sH_3tStnkQYmOHxm8fMQ-gcww0GIaaYcpxyJt6nWhcY9AEa_0qHaAwyo6mQgo3QSQgbAGCCsmM0IlLmBLNsjNhibROvjU06l3RxXrquc81totvWO23W1Xb1rVeF1XWyqnUId6foqNR1sGf7PkFvjw-L2XM6f316md3PU8ME7lIqQRTALDBiYCmhzDJCJSMiqkRbw2xexLt5biwrRWk4SFtInGsOgLWUdIKuBt94ykdvQ6eaKhhb13prXR8UAc4Iy6XAEYUBNd6F4G2pWl812n8qDGqXldoFo3bBqCGruHKxd--XjS1-F37CicD1AFSuVRvX-2189j-_yz9w0ygKivJYNL6l2qKkX2btfoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064247981</pqid></control><display><type>article</type><title>The race to the bottom: approaching the ideal glass?</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Royall, C Patrick ; Turci, Francesco ; Tatsumi, Soichi ; Russo, John ; Robinson, Joshua</creator><creatorcontrib>Royall, C Patrick ; Turci, Francesco ; Tatsumi, Soichi ; Russo, John ; Robinson, Joshua</creatorcontrib><description>Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/aad10a</identifier><identifier>PMID: 29972145</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>aging ; energy landscape ; glass transition ; Kauzmann temperature ; ultrastable glass</subject><ispartof>Journal of physics. Condensed matter, 2018-09, Vol.30 (36), p.363001-363001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</citedby><cites>FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</cites><orcidid>0000-0002-0687-0715 ; 0000-0001-7247-8685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/aad10a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29972145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Royall, C Patrick</creatorcontrib><creatorcontrib>Turci, Francesco</creatorcontrib><creatorcontrib>Tatsumi, Soichi</creatorcontrib><creatorcontrib>Russo, John</creatorcontrib><creatorcontrib>Robinson, Joshua</creatorcontrib><title>The race to the bottom: approaching the ideal glass?</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.</description><subject>aging</subject><subject>energy landscape</subject><subject>glass transition</subject><subject>Kauzmann temperature</subject><subject>ultrastable glass</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMotlbvnmRvenDt5GOziReR4hcUvFTwFtJstt2y26zJ7sH_3tStnkQYmOHxm8fMQ-gcww0GIaaYcpxyJt6nWhcY9AEa_0qHaAwyo6mQgo3QSQgbAGCCsmM0IlLmBLNsjNhibROvjU06l3RxXrquc81totvWO23W1Xb1rVeF1XWyqnUId6foqNR1sGf7PkFvjw-L2XM6f316md3PU8ME7lIqQRTALDBiYCmhzDJCJSMiqkRbw2xexLt5biwrRWk4SFtInGsOgLWUdIKuBt94ykdvQ6eaKhhb13prXR8UAc4Iy6XAEYUBNd6F4G2pWl812n8qDGqXldoFo3bBqCGruHKxd--XjS1-F37CicD1AFSuVRvX-2189j-_yz9w0ygKivJYNL6l2qKkX2btfoI</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Royall, C Patrick</creator><creator>Turci, Francesco</creator><creator>Tatsumi, Soichi</creator><creator>Russo, John</creator><creator>Robinson, Joshua</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0687-0715</orcidid><orcidid>https://orcid.org/0000-0001-7247-8685</orcidid></search><sort><creationdate>20180912</creationdate><title>The race to the bottom: approaching the ideal glass?</title><author>Royall, C Patrick ; Turci, Francesco ; Tatsumi, Soichi ; Russo, John ; Robinson, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-3908d04e042c0b90f552394288d02aec4e7daad67ce4f8fc609ed917a6001a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aging</topic><topic>energy landscape</topic><topic>glass transition</topic><topic>Kauzmann temperature</topic><topic>ultrastable glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Royall, C Patrick</creatorcontrib><creatorcontrib>Turci, Francesco</creatorcontrib><creatorcontrib>Tatsumi, Soichi</creatorcontrib><creatorcontrib>Russo, John</creatorcontrib><creatorcontrib>Robinson, Joshua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Royall, C Patrick</au><au>Turci, Francesco</au><au>Tatsumi, Soichi</au><au>Russo, John</au><au>Robinson, Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The race to the bottom: approaching the ideal glass?</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2018-09-12</date><risdate>2018</risdate><volume>30</volume><issue>36</issue><spage>363001</spage><epage>363001</epage><pages>363001-363001</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29972145</pmid><doi>10.1088/1361-648X/aad10a</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0687-0715</orcidid><orcidid>https://orcid.org/0000-0001-7247-8685</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2018-09, Vol.30 (36), p.363001-363001
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_aad10a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects aging
energy landscape
glass transition
Kauzmann temperature
ultrastable glass
title The race to the bottom: approaching the ideal glass?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20race%20to%20the%20bottom:%20approaching%20the%20ideal%20glass?&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Royall,%20C%20Patrick&rft.date=2018-09-12&rft.volume=30&rft.issue=36&rft.spage=363001&rft.epage=363001&rft.pages=363001-363001&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/aad10a&rft_dat=%3Cproquest_iop_j%3E2064247981%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064247981&rft_id=info:pmid/29972145&rfr_iscdi=true