Advanced defect spectroscopy in wide-bandgap semiconductors: review and recent results
The study of deep-level defects in semiconductors has always played a strategic role in the development of electronic and optoelectronic devices. Deep levels have a strong impact on many of the device properties, including efficiency, stability, and reliability, because they can drive several physic...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2024-11, Vol.57 (43), p.433002 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 43 |
container_start_page | 433002 |
container_title | Journal of physics. D, Applied physics |
container_volume | 57 |
creator | Fregolent, Manuel Piva, Francesco Buffolo, Matteo Santi, Carlo De Cester, Andrea Higashiwaki, Masataka Meneghesso, Gaudenzio Zanoni, Enrico Meneghini, Matteo |
description | The study of deep-level defects in semiconductors has always played a strategic role in the development of electronic and optoelectronic devices. Deep levels have a strong impact on many of the device properties, including efficiency, stability, and reliability, because they can drive several physical processes. Despite the advancements in crystal growth, wide- and ultrawide-bandgap semiconductors (such as gallium nitride and gallium oxide) are still strongly affected by the formation of defects that, in general, can act as carrier traps or generation-recombination centers (G-R). Conventional techniques used for deep-level analysis in silicon need to be adapted for identifying and characterizing defects in wide-bandgap materials. This topical review paper presents an overview of reviews of the theory of deep levels in semiconductors; in addition, we present a review and original results on the application, limits, and perspectives of two widely adopted common deep-level detection techniques, namely capacitance deep-level transient spectroscopy and deep-level optical spectroscopy, with specific focus on wide-bandgap semiconductors. Finally, the most common traps of GaN and
β
-Ga
2
O
3
are reviewed. |
doi_str_mv | 10.1088/1361-6463/ad5b6c |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_ad5b6c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dad5b6c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-1390659458242788e8c431728ba8ca6edd70da056e4c99a722b9e4c8a4f118bb3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoWKd3j_kDjMtHm6bextApDLyo15AmbyVja0vSbuy_N6Xizcv7PLxfPPwQumf0kVGllkxIRmQuxdK4opb2AmV_rUuUUco5ESUvr9FNjDtKaSEVy9DXyh1Na8FhBw3YAcc-1dBF2_Vn7Ft88g5IbVr3bXoc4eBt17rRDl2ITzjA0cMJp2myFtohSRz3Q7xFV43ZR7j71QX6fHn-WL-S7fvmbb3aEstpMRAmKiqLKi8Uz3mpFCibC1ZyVRtljQTnSupMigq5rSpTcl5XySqTN4ypuhYLROe_NkWOARrdB38w4awZ1RMXPUHQEwQ9c0knD_OJ73q968bQpoD_r_8AeX1lgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advanced defect spectroscopy in wide-bandgap semiconductors: review and recent results</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Fregolent, Manuel ; Piva, Francesco ; Buffolo, Matteo ; Santi, Carlo De ; Cester, Andrea ; Higashiwaki, Masataka ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</creator><creatorcontrib>Fregolent, Manuel ; Piva, Francesco ; Buffolo, Matteo ; Santi, Carlo De ; Cester, Andrea ; Higashiwaki, Masataka ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</creatorcontrib><description>The study of deep-level defects in semiconductors has always played a strategic role in the development of electronic and optoelectronic devices. Deep levels have a strong impact on many of the device properties, including efficiency, stability, and reliability, because they can drive several physical processes. Despite the advancements in crystal growth, wide- and ultrawide-bandgap semiconductors (such as gallium nitride and gallium oxide) are still strongly affected by the formation of defects that, in general, can act as carrier traps or generation-recombination centers (G-R). Conventional techniques used for deep-level analysis in silicon need to be adapted for identifying and characterizing defects in wide-bandgap materials. This topical review paper presents an overview of reviews of the theory of deep levels in semiconductors; in addition, we present a review and original results on the application, limits, and perspectives of two widely adopted common deep-level detection techniques, namely capacitance deep-level transient spectroscopy and deep-level optical spectroscopy, with specific focus on wide-bandgap semiconductors. Finally, the most common traps of GaN and
β
-Ga
2
O
3
are reviewed.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ad5b6c</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>deep levels ; deep-level optical spectroscopy ; deep-level transient spectroscopy ; gallium nitride ; gallium oxide ; wide-bandgap semiconductors</subject><ispartof>Journal of physics. D, Applied physics, 2024-11, Vol.57 (43), p.433002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-1390659458242788e8c431728ba8ca6edd70da056e4c99a722b9e4c8a4f118bb3</cites><orcidid>0000-0003-0801-2260 ; 0000-0001-6064-077X ; 0000-0001-6583-1735 ; 0000-0001-7349-9656 ; 0000-0003-3620-5510 ; 0000-0003-2821-3107 ; 0000-0002-6715-4827 ; 0000-0002-9255-6457 ; 0000-0003-2421-505X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ad5b6c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Fregolent, Manuel</creatorcontrib><creatorcontrib>Piva, Francesco</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Santi, Carlo De</creatorcontrib><creatorcontrib>Cester, Andrea</creatorcontrib><creatorcontrib>Higashiwaki, Masataka</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><title>Advanced defect spectroscopy in wide-bandgap semiconductors: review and recent results</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The study of deep-level defects in semiconductors has always played a strategic role in the development of electronic and optoelectronic devices. Deep levels have a strong impact on many of the device properties, including efficiency, stability, and reliability, because they can drive several physical processes. Despite the advancements in crystal growth, wide- and ultrawide-bandgap semiconductors (such as gallium nitride and gallium oxide) are still strongly affected by the formation of defects that, in general, can act as carrier traps or generation-recombination centers (G-R). Conventional techniques used for deep-level analysis in silicon need to be adapted for identifying and characterizing defects in wide-bandgap materials. This topical review paper presents an overview of reviews of the theory of deep levels in semiconductors; in addition, we present a review and original results on the application, limits, and perspectives of two widely adopted common deep-level detection techniques, namely capacitance deep-level transient spectroscopy and deep-level optical spectroscopy, with specific focus on wide-bandgap semiconductors. Finally, the most common traps of GaN and
β
-Ga
2
O
3
are reviewed.</description><subject>deep levels</subject><subject>deep-level optical spectroscopy</subject><subject>deep-level transient spectroscopy</subject><subject>gallium nitride</subject><subject>gallium oxide</subject><subject>wide-bandgap semiconductors</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LwzAYxoMoWKd3j_kDjMtHm6bextApDLyo15AmbyVja0vSbuy_N6Xizcv7PLxfPPwQumf0kVGllkxIRmQuxdK4opb2AmV_rUuUUco5ESUvr9FNjDtKaSEVy9DXyh1Na8FhBw3YAcc-1dBF2_Vn7Ft88g5IbVr3bXoc4eBt17rRDl2ITzjA0cMJp2myFtohSRz3Q7xFV43ZR7j71QX6fHn-WL-S7fvmbb3aEstpMRAmKiqLKi8Uz3mpFCibC1ZyVRtljQTnSupMigq5rSpTcl5XySqTN4ypuhYLROe_NkWOARrdB38w4awZ1RMXPUHQEwQ9c0knD_OJ73q968bQpoD_r_8AeX1lgA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Fregolent, Manuel</creator><creator>Piva, Francesco</creator><creator>Buffolo, Matteo</creator><creator>Santi, Carlo De</creator><creator>Cester, Andrea</creator><creator>Higashiwaki, Masataka</creator><creator>Meneghesso, Gaudenzio</creator><creator>Zanoni, Enrico</creator><creator>Meneghini, Matteo</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0801-2260</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0001-6583-1735</orcidid><orcidid>https://orcid.org/0000-0001-7349-9656</orcidid><orcidid>https://orcid.org/0000-0003-3620-5510</orcidid><orcidid>https://orcid.org/0000-0003-2821-3107</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid></search><sort><creationdate>20241101</creationdate><title>Advanced defect spectroscopy in wide-bandgap semiconductors: review and recent results</title><author>Fregolent, Manuel ; Piva, Francesco ; Buffolo, Matteo ; Santi, Carlo De ; Cester, Andrea ; Higashiwaki, Masataka ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-1390659458242788e8c431728ba8ca6edd70da056e4c99a722b9e4c8a4f118bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep levels</topic><topic>deep-level optical spectroscopy</topic><topic>deep-level transient spectroscopy</topic><topic>gallium nitride</topic><topic>gallium oxide</topic><topic>wide-bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fregolent, Manuel</creatorcontrib><creatorcontrib>Piva, Francesco</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Santi, Carlo De</creatorcontrib><creatorcontrib>Cester, Andrea</creatorcontrib><creatorcontrib>Higashiwaki, Masataka</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fregolent, Manuel</au><au>Piva, Francesco</au><au>Buffolo, Matteo</au><au>Santi, Carlo De</au><au>Cester, Andrea</au><au>Higashiwaki, Masataka</au><au>Meneghesso, Gaudenzio</au><au>Zanoni, Enrico</au><au>Meneghini, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced defect spectroscopy in wide-bandgap semiconductors: review and recent results</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>57</volume><issue>43</issue><spage>433002</spage><pages>433002-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The study of deep-level defects in semiconductors has always played a strategic role in the development of electronic and optoelectronic devices. Deep levels have a strong impact on many of the device properties, including efficiency, stability, and reliability, because they can drive several physical processes. Despite the advancements in crystal growth, wide- and ultrawide-bandgap semiconductors (such as gallium nitride and gallium oxide) are still strongly affected by the formation of defects that, in general, can act as carrier traps or generation-recombination centers (G-R). Conventional techniques used for deep-level analysis in silicon need to be adapted for identifying and characterizing defects in wide-bandgap materials. This topical review paper presents an overview of reviews of the theory of deep levels in semiconductors; in addition, we present a review and original results on the application, limits, and perspectives of two widely adopted common deep-level detection techniques, namely capacitance deep-level transient spectroscopy and deep-level optical spectroscopy, with specific focus on wide-bandgap semiconductors. Finally, the most common traps of GaN and
β
-Ga
2
O
3
are reviewed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ad5b6c</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0801-2260</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0001-6583-1735</orcidid><orcidid>https://orcid.org/0000-0001-7349-9656</orcidid><orcidid>https://orcid.org/0000-0003-3620-5510</orcidid><orcidid>https://orcid.org/0000-0003-2821-3107</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2024-11, Vol.57 (43), p.433002 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_ad5b6c |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | deep levels deep-level optical spectroscopy deep-level transient spectroscopy gallium nitride gallium oxide wide-bandgap semiconductors |
title | Advanced defect spectroscopy in wide-bandgap semiconductors: review and recent results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20defect%20spectroscopy%20in%20wide-bandgap%20semiconductors:%20review%20and%20recent%20results&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Fregolent,%20Manuel&rft.date=2024-11-01&rft.volume=57&rft.issue=43&rft.spage=433002&rft.pages=433002-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ad5b6c&rft_dat=%3Ciop_cross%3Edad5b6c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |