Anapole-assisted ultra-narrow-band lattice resonance in slotted silicon nanodisk arrays

Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q -fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2023-09, Vol.56 (37), p.375102
Hauptverfasser: Luo, Minghe, Hu, Jinyong, Li, Yiming, Bai, Wangdi, Zhang, Runlu, Lin, Qi, Wang, Lingling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 37
container_start_page 375102
container_title Journal of physics. D, Applied physics
container_volume 56
creator Luo, Minghe
Hu, Jinyong
Li, Yiming
Bai, Wangdi
Zhang, Runlu
Lin, Qi
Wang, Lingling
description Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q -factor resonance features with a narrow linewidth. In this work, a periodic slotted silicon nanodisk array is theoretically proposed to realize narrow linewidth and high Q -factor resonance in the near-infrared wavelength range. Through introducing the coupling between the anapole modes in the single dielectric nanostructure and the diffractive wave mode arising from the periodic array, the as-designed dielectric nanostructure synchronously manifests excellent spectral features with a bandwidth as narrow as about 2.0 nm, a large Q -factor of 599, an almost-perfect transmission amplitude of 96% and a relatively high electric field intensity (>2809 times) in the middle of the slotted silicon nanodisk. The as-designed nanostructure possessing these outstanding optical features can work as a high-efficiency refractive index sensor, whose sensitivity can reach 161.5 nm RIU −1 with its figure of merit attaining 80.8 RIU −1 , efficiently distinguishing an index change of less than 0.01. The proposed slotted silicon nanodisk array exhibits tremendous potential for expanding applications such as label-free biochemical sensing, plasmonic refractive index sensing and surface enhancement spectroscopy.
doi_str_mv 10.1088/1361-6463/acd85f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_acd85f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dacd85f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d12e7156357363b9689a2f9ab17b71561b4d0a25322ab36f6bcd4966bf53632e3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfbkybj5aNL2uCx-wYIXxWOYNAlkrUlJusj-96aseBJhYIY3vzcMD6FrSu4oadsV5ZJiWUu-gt60wp2gxa90ihaEMIZ5w5pzdJHzjhAiZEsX6H0dYIyDxZCzz5M11X6YEuAAKcUvrCGYaoBp8r2tks0xQCiTD1Ue4jTj2Q--j6Eqi2h8_qiKEQ75Ep05GLK9-ulL9PZw_7p5wtuXx-fNeot7TumEDWW2oUJy0XDJdSfbDpjrQNNGzzrVtSHABGcMNJdO6t7UnZTaicIzy5eIHO_2KeacrFNj8p-QDooSNQej5hTUnII6BlMst0eLj6PaxX0K5cH_8Js_cKOEVLwpJShhajSOfwNnKXJi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anapole-assisted ultra-narrow-band lattice resonance in slotted silicon nanodisk arrays</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Luo, Minghe ; Hu, Jinyong ; Li, Yiming ; Bai, Wangdi ; Zhang, Runlu ; Lin, Qi ; Wang, Lingling</creator><creatorcontrib>Luo, Minghe ; Hu, Jinyong ; Li, Yiming ; Bai, Wangdi ; Zhang, Runlu ; Lin, Qi ; Wang, Lingling</creatorcontrib><description>Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q -factor resonance features with a narrow linewidth. In this work, a periodic slotted silicon nanodisk array is theoretically proposed to realize narrow linewidth and high Q -factor resonance in the near-infrared wavelength range. Through introducing the coupling between the anapole modes in the single dielectric nanostructure and the diffractive wave mode arising from the periodic array, the as-designed dielectric nanostructure synchronously manifests excellent spectral features with a bandwidth as narrow as about 2.0 nm, a large Q -factor of 599, an almost-perfect transmission amplitude of 96% and a relatively high electric field intensity (&gt;2809 times) in the middle of the slotted silicon nanodisk. The as-designed nanostructure possessing these outstanding optical features can work as a high-efficiency refractive index sensor, whose sensitivity can reach 161.5 nm RIU −1 with its figure of merit attaining 80.8 RIU −1 , efficiently distinguishing an index change of less than 0.01. The proposed slotted silicon nanodisk array exhibits tremendous potential for expanding applications such as label-free biochemical sensing, plasmonic refractive index sensing and surface enhancement spectroscopy.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/acd85f</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>anapole modes ; diffractive wave modes ; factor ; high ; lattice resonance ; refractive index sensor</subject><ispartof>Journal of physics. D, Applied physics, 2023-09, Vol.56 (37), p.375102</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d12e7156357363b9689a2f9ab17b71561b4d0a25322ab36f6bcd4966bf53632e3</citedby><cites>FETCH-LOGICAL-c311t-d12e7156357363b9689a2f9ab17b71561b4d0a25322ab36f6bcd4966bf53632e3</cites><orcidid>0000-0003-4172-5369 ; 0000-0002-0891-9252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/acd85f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Luo, Minghe</creatorcontrib><creatorcontrib>Hu, Jinyong</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Bai, Wangdi</creatorcontrib><creatorcontrib>Zhang, Runlu</creatorcontrib><creatorcontrib>Lin, Qi</creatorcontrib><creatorcontrib>Wang, Lingling</creatorcontrib><title>Anapole-assisted ultra-narrow-band lattice resonance in slotted silicon nanodisk arrays</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q -factor resonance features with a narrow linewidth. In this work, a periodic slotted silicon nanodisk array is theoretically proposed to realize narrow linewidth and high Q -factor resonance in the near-infrared wavelength range. Through introducing the coupling between the anapole modes in the single dielectric nanostructure and the diffractive wave mode arising from the periodic array, the as-designed dielectric nanostructure synchronously manifests excellent spectral features with a bandwidth as narrow as about 2.0 nm, a large Q -factor of 599, an almost-perfect transmission amplitude of 96% and a relatively high electric field intensity (&gt;2809 times) in the middle of the slotted silicon nanodisk. The as-designed nanostructure possessing these outstanding optical features can work as a high-efficiency refractive index sensor, whose sensitivity can reach 161.5 nm RIU −1 with its figure of merit attaining 80.8 RIU −1 , efficiently distinguishing an index change of less than 0.01. The proposed slotted silicon nanodisk array exhibits tremendous potential for expanding applications such as label-free biochemical sensing, plasmonic refractive index sensing and surface enhancement spectroscopy.</description><subject>anapole modes</subject><subject>diffractive wave modes</subject><subject>factor</subject><subject>high</subject><subject>lattice resonance</subject><subject>refractive index sensor</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfbkybj5aNL2uCx-wYIXxWOYNAlkrUlJusj-96aseBJhYIY3vzcMD6FrSu4oadsV5ZJiWUu-gt60wp2gxa90ihaEMIZ5w5pzdJHzjhAiZEsX6H0dYIyDxZCzz5M11X6YEuAAKcUvrCGYaoBp8r2tks0xQCiTD1Ue4jTj2Q--j6Eqi2h8_qiKEQ75Ep05GLK9-ulL9PZw_7p5wtuXx-fNeot7TumEDWW2oUJy0XDJdSfbDpjrQNNGzzrVtSHABGcMNJdO6t7UnZTaicIzy5eIHO_2KeacrFNj8p-QDooSNQej5hTUnII6BlMst0eLj6PaxX0K5cH_8Js_cKOEVLwpJShhajSOfwNnKXJi</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Luo, Minghe</creator><creator>Hu, Jinyong</creator><creator>Li, Yiming</creator><creator>Bai, Wangdi</creator><creator>Zhang, Runlu</creator><creator>Lin, Qi</creator><creator>Wang, Lingling</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4172-5369</orcidid><orcidid>https://orcid.org/0000-0002-0891-9252</orcidid></search><sort><creationdate>20230914</creationdate><title>Anapole-assisted ultra-narrow-band lattice resonance in slotted silicon nanodisk arrays</title><author>Luo, Minghe ; Hu, Jinyong ; Li, Yiming ; Bai, Wangdi ; Zhang, Runlu ; Lin, Qi ; Wang, Lingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d12e7156357363b9689a2f9ab17b71561b4d0a25322ab36f6bcd4966bf53632e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anapole modes</topic><topic>diffractive wave modes</topic><topic>factor</topic><topic>high</topic><topic>lattice resonance</topic><topic>refractive index sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Minghe</creatorcontrib><creatorcontrib>Hu, Jinyong</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Bai, Wangdi</creatorcontrib><creatorcontrib>Zhang, Runlu</creatorcontrib><creatorcontrib>Lin, Qi</creatorcontrib><creatorcontrib>Wang, Lingling</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Minghe</au><au>Hu, Jinyong</au><au>Li, Yiming</au><au>Bai, Wangdi</au><au>Zhang, Runlu</au><au>Lin, Qi</au><au>Wang, Lingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anapole-assisted ultra-narrow-band lattice resonance in slotted silicon nanodisk arrays</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2023-09-14</date><risdate>2023</risdate><volume>56</volume><issue>37</issue><spage>375102</spage><pages>375102-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q -factor resonance features with a narrow linewidth. In this work, a periodic slotted silicon nanodisk array is theoretically proposed to realize narrow linewidth and high Q -factor resonance in the near-infrared wavelength range. Through introducing the coupling between the anapole modes in the single dielectric nanostructure and the diffractive wave mode arising from the periodic array, the as-designed dielectric nanostructure synchronously manifests excellent spectral features with a bandwidth as narrow as about 2.0 nm, a large Q -factor of 599, an almost-perfect transmission amplitude of 96% and a relatively high electric field intensity (&gt;2809 times) in the middle of the slotted silicon nanodisk. The as-designed nanostructure possessing these outstanding optical features can work as a high-efficiency refractive index sensor, whose sensitivity can reach 161.5 nm RIU −1 with its figure of merit attaining 80.8 RIU −1 , efficiently distinguishing an index change of less than 0.01. The proposed slotted silicon nanodisk array exhibits tremendous potential for expanding applications such as label-free biochemical sensing, plasmonic refractive index sensing and surface enhancement spectroscopy.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/acd85f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4172-5369</orcidid><orcidid>https://orcid.org/0000-0002-0891-9252</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2023-09, Vol.56 (37), p.375102
issn 0022-3727
1361-6463
language eng
recordid cdi_iop_journals_10_1088_1361_6463_acd85f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects anapole modes
diffractive wave modes
factor
high
lattice resonance
refractive index sensor
title Anapole-assisted ultra-narrow-band lattice resonance in slotted silicon nanodisk arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anapole-assisted%20ultra-narrow-band%20lattice%20resonance%20in%20slotted%20silicon%20nanodisk%20arrays&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Luo,%20Minghe&rft.date=2023-09-14&rft.volume=56&rft.issue=37&rft.spage=375102&rft.pages=375102-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/acd85f&rft_dat=%3Ciop_cross%3Edacd85f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true