Non-melt selective enhancement of crystalline structure in molybdenum thin films using femtosecond laser pulses
It is challenging to crystalize a thin film of higher melting temperature when deposited on a substrate with comparatively lower melting point. Trading such disparities in thermal properties between a thin film and its substrate can significantly impede material processing. We report a novel solid-s...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2022-03, Vol.55 (11), p.115301 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115301 |
container_title | Journal of physics. D, Applied physics |
container_volume | 55 |
creator | Sharif, Ayesha Farid, Nazar Wang, Mingqing Vijayaraghavan, Rajani K Choy, Kwang-Leong McNally, Patrick J O’Connor, Gerard M |
description | It is challenging to crystalize a thin film of higher melting temperature when deposited on a substrate with comparatively lower melting point. Trading such disparities in thermal properties between a thin film and its substrate can significantly impede material processing. We report a novel solid-state crystallization process for annealing of high melting point molybdenum thin films. A systematic investigation of laser induced annealing from single pulse to high pulse overlapping is reported upon scanning at fluences lower than the threshold required for the damage/ablation of molybdenum thin films. The approach allows better control of the grain size by changing the applied laser fluence. Atomic force microscopy surface morphology and x-ray diffraction (XRD) analysis reveal significant improvements in the average polycrystalline grain size after laser annealing; the sheet resistance was reduced by 19% of the initial value measured by a Four-point probe system. XRD confirms the enlargement of the single crystal grain size. No melting was evident, although a change in the close packing, shape and size of nanoscale polycrystalline grains is observed. Ultrashort laser induced crystallinity greatly enhances the electrical properties; Hall measurements reinforced that the overall carrier concentration increases after scanning at different laser fluences. The proposed method, based on the aggregation and subsequent growth of polycrystalline and single crystal-grains, leading to enhanced crystallization, has potential to be applicable in thin film processing industry for their wide applications. |
doi_str_mv | 10.1088/1361-6463/ac3e91 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_ac3e91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dac3e91</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-733bbfeb681308fd9f7f35a007712f6eb125e9a89c26f35b9eac333be51bc84c3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrd495uTJtcmm2Y-jFL-g6EXPIZud2JRssiRZYf-9KRVPIgzM13vDm4fQNSV3lDTNirKKFtW6YiupGLT0BC1-R6doQUhZFqwu63N0EeOeEMKrhi6Qf_WuGMAmHMGCSuYLMLiddAoGcAl7jVWYY5LWGgc4pjCpNAXAxuHB27nrwU0DTrvca2OHiKdo3CfWMCQfQXnXYysjBDxONkK8RGda5uLqJy_Rx-PD--a52L49vWzut4VinKWiZqzrNHRZIyON7ltda8YlIXVNS11BR0sOrWxaVVZ50bWQv84c4LRTzVqxJSLHuyr4GANoMQYzyDALSsTBMHFwRxzcEUfDMuX2SDF-FHs_BZcF_ge_-QPeC84FpTk4I1SMvWbfmBN8XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-melt selective enhancement of crystalline structure in molybdenum thin films using femtosecond laser pulses</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sharif, Ayesha ; Farid, Nazar ; Wang, Mingqing ; Vijayaraghavan, Rajani K ; Choy, Kwang-Leong ; McNally, Patrick J ; O’Connor, Gerard M</creator><creatorcontrib>Sharif, Ayesha ; Farid, Nazar ; Wang, Mingqing ; Vijayaraghavan, Rajani K ; Choy, Kwang-Leong ; McNally, Patrick J ; O’Connor, Gerard M</creatorcontrib><description>It is challenging to crystalize a thin film of higher melting temperature when deposited on a substrate with comparatively lower melting point. Trading such disparities in thermal properties between a thin film and its substrate can significantly impede material processing. We report a novel solid-state crystallization process for annealing of high melting point molybdenum thin films. A systematic investigation of laser induced annealing from single pulse to high pulse overlapping is reported upon scanning at fluences lower than the threshold required for the damage/ablation of molybdenum thin films. The approach allows better control of the grain size by changing the applied laser fluence. Atomic force microscopy surface morphology and x-ray diffraction (XRD) analysis reveal significant improvements in the average polycrystalline grain size after laser annealing; the sheet resistance was reduced by 19% of the initial value measured by a Four-point probe system. XRD confirms the enlargement of the single crystal grain size. No melting was evident, although a change in the close packing, shape and size of nanoscale polycrystalline grains is observed. Ultrashort laser induced crystallinity greatly enhances the electrical properties; Hall measurements reinforced that the overall carrier concentration increases after scanning at different laser fluences. The proposed method, based on the aggregation and subsequent growth of polycrystalline and single crystal-grains, leading to enhanced crystallization, has potential to be applicable in thin film processing industry for their wide applications.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ac3e91</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crystallinity ; electrical properties ; laser fluence ; melting temperature ; molybdenum thin films ; TFTs ; ultrashort laser pulses</subject><ispartof>Journal of physics. D, Applied physics, 2022-03, Vol.55 (11), p.115301</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-733bbfeb681308fd9f7f35a007712f6eb125e9a89c26f35b9eac333be51bc84c3</citedby><cites>FETCH-LOGICAL-c353t-733bbfeb681308fd9f7f35a007712f6eb125e9a89c26f35b9eac333be51bc84c3</cites><orcidid>0000-0001-5604-1475 ; 0000-0003-1096-448X ; 0000-0003-0556-6794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ac3e91/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Sharif, Ayesha</creatorcontrib><creatorcontrib>Farid, Nazar</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Vijayaraghavan, Rajani K</creatorcontrib><creatorcontrib>Choy, Kwang-Leong</creatorcontrib><creatorcontrib>McNally, Patrick J</creatorcontrib><creatorcontrib>O’Connor, Gerard M</creatorcontrib><title>Non-melt selective enhancement of crystalline structure in molybdenum thin films using femtosecond laser pulses</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>It is challenging to crystalize a thin film of higher melting temperature when deposited on a substrate with comparatively lower melting point. Trading such disparities in thermal properties between a thin film and its substrate can significantly impede material processing. We report a novel solid-state crystallization process for annealing of high melting point molybdenum thin films. A systematic investigation of laser induced annealing from single pulse to high pulse overlapping is reported upon scanning at fluences lower than the threshold required for the damage/ablation of molybdenum thin films. The approach allows better control of the grain size by changing the applied laser fluence. Atomic force microscopy surface morphology and x-ray diffraction (XRD) analysis reveal significant improvements in the average polycrystalline grain size after laser annealing; the sheet resistance was reduced by 19% of the initial value measured by a Four-point probe system. XRD confirms the enlargement of the single crystal grain size. No melting was evident, although a change in the close packing, shape and size of nanoscale polycrystalline grains is observed. Ultrashort laser induced crystallinity greatly enhances the electrical properties; Hall measurements reinforced that the overall carrier concentration increases after scanning at different laser fluences. The proposed method, based on the aggregation and subsequent growth of polycrystalline and single crystal-grains, leading to enhanced crystallization, has potential to be applicable in thin film processing industry for their wide applications.</description><subject>crystallinity</subject><subject>electrical properties</subject><subject>laser fluence</subject><subject>melting temperature</subject><subject>molybdenum thin films</subject><subject>TFTs</subject><subject>ultrashort laser pulses</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9UE1LAzEQDaJgrd495uTJtcmm2Y-jFL-g6EXPIZud2JRssiRZYf-9KRVPIgzM13vDm4fQNSV3lDTNirKKFtW6YiupGLT0BC1-R6doQUhZFqwu63N0EeOeEMKrhi6Qf_WuGMAmHMGCSuYLMLiddAoGcAl7jVWYY5LWGgc4pjCpNAXAxuHB27nrwU0DTrvca2OHiKdo3CfWMCQfQXnXYysjBDxONkK8RGda5uLqJy_Rx-PD--a52L49vWzut4VinKWiZqzrNHRZIyON7ltda8YlIXVNS11BR0sOrWxaVVZ50bWQv84c4LRTzVqxJSLHuyr4GANoMQYzyDALSsTBMHFwRxzcEUfDMuX2SDF-FHs_BZcF_ge_-QPeC84FpTk4I1SMvWbfmBN8XQ</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Sharif, Ayesha</creator><creator>Farid, Nazar</creator><creator>Wang, Mingqing</creator><creator>Vijayaraghavan, Rajani K</creator><creator>Choy, Kwang-Leong</creator><creator>McNally, Patrick J</creator><creator>O’Connor, Gerard M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5604-1475</orcidid><orcidid>https://orcid.org/0000-0003-1096-448X</orcidid><orcidid>https://orcid.org/0000-0003-0556-6794</orcidid></search><sort><creationdate>20220317</creationdate><title>Non-melt selective enhancement of crystalline structure in molybdenum thin films using femtosecond laser pulses</title><author>Sharif, Ayesha ; Farid, Nazar ; Wang, Mingqing ; Vijayaraghavan, Rajani K ; Choy, Kwang-Leong ; McNally, Patrick J ; O’Connor, Gerard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-733bbfeb681308fd9f7f35a007712f6eb125e9a89c26f35b9eac333be51bc84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>crystallinity</topic><topic>electrical properties</topic><topic>laser fluence</topic><topic>melting temperature</topic><topic>molybdenum thin films</topic><topic>TFTs</topic><topic>ultrashort laser pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharif, Ayesha</creatorcontrib><creatorcontrib>Farid, Nazar</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Vijayaraghavan, Rajani K</creatorcontrib><creatorcontrib>Choy, Kwang-Leong</creatorcontrib><creatorcontrib>McNally, Patrick J</creatorcontrib><creatorcontrib>O’Connor, Gerard M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharif, Ayesha</au><au>Farid, Nazar</au><au>Wang, Mingqing</au><au>Vijayaraghavan, Rajani K</au><au>Choy, Kwang-Leong</au><au>McNally, Patrick J</au><au>O’Connor, Gerard M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-melt selective enhancement of crystalline structure in molybdenum thin films using femtosecond laser pulses</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>55</volume><issue>11</issue><spage>115301</spage><pages>115301-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>It is challenging to crystalize a thin film of higher melting temperature when deposited on a substrate with comparatively lower melting point. Trading such disparities in thermal properties between a thin film and its substrate can significantly impede material processing. We report a novel solid-state crystallization process for annealing of high melting point molybdenum thin films. A systematic investigation of laser induced annealing from single pulse to high pulse overlapping is reported upon scanning at fluences lower than the threshold required for the damage/ablation of molybdenum thin films. The approach allows better control of the grain size by changing the applied laser fluence. Atomic force microscopy surface morphology and x-ray diffraction (XRD) analysis reveal significant improvements in the average polycrystalline grain size after laser annealing; the sheet resistance was reduced by 19% of the initial value measured by a Four-point probe system. XRD confirms the enlargement of the single crystal grain size. No melting was evident, although a change in the close packing, shape and size of nanoscale polycrystalline grains is observed. Ultrashort laser induced crystallinity greatly enhances the electrical properties; Hall measurements reinforced that the overall carrier concentration increases after scanning at different laser fluences. The proposed method, based on the aggregation and subsequent growth of polycrystalline and single crystal-grains, leading to enhanced crystallization, has potential to be applicable in thin film processing industry for their wide applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ac3e91</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5604-1475</orcidid><orcidid>https://orcid.org/0000-0003-1096-448X</orcidid><orcidid>https://orcid.org/0000-0003-0556-6794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2022-03, Vol.55 (11), p.115301 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_ac3e91 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | crystallinity electrical properties laser fluence melting temperature molybdenum thin films TFTs ultrashort laser pulses |
title | Non-melt selective enhancement of crystalline structure in molybdenum thin films using femtosecond laser pulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-melt%20selective%20enhancement%20of%20crystalline%20structure%20in%20molybdenum%20thin%20films%20using%20femtosecond%20laser%20pulses&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Sharif,%20Ayesha&rft.date=2022-03-17&rft.volume=55&rft.issue=11&rft.spage=115301&rft.pages=115301-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ac3e91&rft_dat=%3Ciop_cross%3Edac3e91%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |