Electron mobility in oxide heterostructures

Next-generation integrated circuit devices based on transition-metal-oxides are expected to boast a variety of extraordinary properties, such as superconductivity, transparency in the visible range, thermoelectricity, giant ionic conductivity and ferromagnetism. However, the realisation of this so-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2018-07, Vol.51 (29), p.293002
Hauptverfasser: Trier, F, Christensen, D V, Pryds, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 29
container_start_page 293002
container_title Journal of physics. D, Applied physics
container_volume 51
creator Trier, F
Christensen, D V
Pryds, N
description Next-generation integrated circuit devices based on transition-metal-oxides are expected to boast a variety of extraordinary properties, such as superconductivity, transparency in the visible range, thermoelectricity, giant ionic conductivity and ferromagnetism. However, the realisation of this so-called oxide electronics as well as the study of their unconventional physics is stalled by inferior carrier mobilities compared to conventional semiconductor materials. Over the past 10 years, bulk conducting oxides and oxide heterostructures with superior carrier mobilities have nonetheless seen significant progress. This progress is signifying the approaching era of oxide-based electronic circuits along with novel solid-state phenomena originating from the combination of hybridized oxygen p orbitals, transition-metal d orbitals and electronic correlations. Here, we review the recent advancements and results on high mobility oxide heterostructures based on SrTiO3 and ZnO as well as other prominent oxides.
doi_str_mv 10.1088/1361-6463/aac9aa
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aac9aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daac9aa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9bf0370896cab457eb2a84226181d40d5ad82caa953e034b9a9f8a639f2777b43</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRMFbvHnPyorGzu8l-HKW0KhS86HmZ_QimpEnYJGD_exMinkQYGBjem3m_IeSWwiMFpdaUC5qJXPA1otOIZyT5HZ2TBICxjEsmL8lV3x8AoBCKJuR-Wwc3xLZJj62t6mo4pVWTtl-VD-lnGEJs-yGObhhj6K_JRYl1H25--op87Lbvm5ds__b8unnaZ44XfMi0LYFLUFo4tHkhg2WocsYEVdTn4Av0ijlEXfAAPLcadalQcF0yKaXN-YrAstdN1_sYStPF6ojxZCiYGdbMZGYmMwvsZHlYLFXbmUM7xmYK-J_87g-5NwU1TE_Fp3eZzpf8G-fBYr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron mobility in oxide heterostructures</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Trier, F ; Christensen, D V ; Pryds, N</creator><creatorcontrib>Trier, F ; Christensen, D V ; Pryds, N</creatorcontrib><description>Next-generation integrated circuit devices based on transition-metal-oxides are expected to boast a variety of extraordinary properties, such as superconductivity, transparency in the visible range, thermoelectricity, giant ionic conductivity and ferromagnetism. However, the realisation of this so-called oxide electronics as well as the study of their unconventional physics is stalled by inferior carrier mobilities compared to conventional semiconductor materials. Over the past 10 years, bulk conducting oxides and oxide heterostructures with superior carrier mobilities have nonetheless seen significant progress. This progress is signifying the approaching era of oxide-based electronic circuits along with novel solid-state phenomena originating from the combination of hybridized oxygen p orbitals, transition-metal d orbitals and electronic correlations. Here, we review the recent advancements and results on high mobility oxide heterostructures based on SrTiO3 and ZnO as well as other prominent oxides.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aac9aa</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>electron mobility ; hole mobility ; oxide heterostructures ; oxides ; SrTiO ; ZnO</subject><ispartof>Journal of physics. D, Applied physics, 2018-07, Vol.51 (29), p.293002</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9bf0370896cab457eb2a84226181d40d5ad82caa953e034b9a9f8a639f2777b43</citedby><cites>FETCH-LOGICAL-c353t-9bf0370896cab457eb2a84226181d40d5ad82caa953e034b9a9f8a639f2777b43</cites><orcidid>0000-0003-0228-0635 ; 0000-0002-5718-7924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aac9aa/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Trier, F</creatorcontrib><creatorcontrib>Christensen, D V</creatorcontrib><creatorcontrib>Pryds, N</creatorcontrib><title>Electron mobility in oxide heterostructures</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Next-generation integrated circuit devices based on transition-metal-oxides are expected to boast a variety of extraordinary properties, such as superconductivity, transparency in the visible range, thermoelectricity, giant ionic conductivity and ferromagnetism. However, the realisation of this so-called oxide electronics as well as the study of their unconventional physics is stalled by inferior carrier mobilities compared to conventional semiconductor materials. Over the past 10 years, bulk conducting oxides and oxide heterostructures with superior carrier mobilities have nonetheless seen significant progress. This progress is signifying the approaching era of oxide-based electronic circuits along with novel solid-state phenomena originating from the combination of hybridized oxygen p orbitals, transition-metal d orbitals and electronic correlations. Here, we review the recent advancements and results on high mobility oxide heterostructures based on SrTiO3 and ZnO as well as other prominent oxides.</description><subject>electron mobility</subject><subject>hole mobility</subject><subject>oxide heterostructures</subject><subject>oxides</subject><subject>SrTiO</subject><subject>ZnO</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRMFbvHnPyorGzu8l-HKW0KhS86HmZ_QimpEnYJGD_exMinkQYGBjem3m_IeSWwiMFpdaUC5qJXPA1otOIZyT5HZ2TBICxjEsmL8lV3x8AoBCKJuR-Wwc3xLZJj62t6mo4pVWTtl-VD-lnGEJs-yGObhhj6K_JRYl1H25--op87Lbvm5ds__b8unnaZ44XfMi0LYFLUFo4tHkhg2WocsYEVdTn4Av0ijlEXfAAPLcadalQcF0yKaXN-YrAstdN1_sYStPF6ojxZCiYGdbMZGYmMwvsZHlYLFXbmUM7xmYK-J_87g-5NwU1TE_Fp3eZzpf8G-fBYr8</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Trier, F</creator><creator>Christensen, D V</creator><creator>Pryds, N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0228-0635</orcidid><orcidid>https://orcid.org/0000-0002-5718-7924</orcidid></search><sort><creationdate>20180725</creationdate><title>Electron mobility in oxide heterostructures</title><author>Trier, F ; Christensen, D V ; Pryds, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9bf0370896cab457eb2a84226181d40d5ad82caa953e034b9a9f8a639f2777b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>electron mobility</topic><topic>hole mobility</topic><topic>oxide heterostructures</topic><topic>oxides</topic><topic>SrTiO</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trier, F</creatorcontrib><creatorcontrib>Christensen, D V</creatorcontrib><creatorcontrib>Pryds, N</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trier, F</au><au>Christensen, D V</au><au>Pryds, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron mobility in oxide heterostructures</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>51</volume><issue>29</issue><spage>293002</spage><pages>293002-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Next-generation integrated circuit devices based on transition-metal-oxides are expected to boast a variety of extraordinary properties, such as superconductivity, transparency in the visible range, thermoelectricity, giant ionic conductivity and ferromagnetism. However, the realisation of this so-called oxide electronics as well as the study of their unconventional physics is stalled by inferior carrier mobilities compared to conventional semiconductor materials. Over the past 10 years, bulk conducting oxides and oxide heterostructures with superior carrier mobilities have nonetheless seen significant progress. This progress is signifying the approaching era of oxide-based electronic circuits along with novel solid-state phenomena originating from the combination of hybridized oxygen p orbitals, transition-metal d orbitals and electronic correlations. Here, we review the recent advancements and results on high mobility oxide heterostructures based on SrTiO3 and ZnO as well as other prominent oxides.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aac9aa</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0228-0635</orcidid><orcidid>https://orcid.org/0000-0002-5718-7924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2018-07, Vol.51 (29), p.293002
issn 0022-3727
1361-6463
language eng
recordid cdi_iop_journals_10_1088_1361_6463_aac9aa
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects electron mobility
hole mobility
oxide heterostructures
oxides
SrTiO
ZnO
title Electron mobility in oxide heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20mobility%20in%20oxide%20heterostructures&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Trier,%20F&rft.date=2018-07-25&rft.volume=51&rft.issue=29&rft.spage=293002&rft.pages=293002-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aac9aa&rft_dat=%3Ciop_cross%3Edaac9aa%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true