Molecular dynamics simulations of ferroelectric domain formation by oxygen vacancy

An oxygen vacancy, known to be detrimental to ferroelectric properties, has been investigated numerically for the potential uses to control ferroelectric domains in films using molecular dynamics simulations based on the first-principles effective Hamiltonian. As an electron donor, an oxygen vacancy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2018-04, Vol.51 (18), p.185303
Hauptverfasser: Zhu, Lin, You, Jeong Ho, Chen, Jinghong, Yeo, Changdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An oxygen vacancy, known to be detrimental to ferroelectric properties, has been investigated numerically for the potential uses to control ferroelectric domains in films using molecular dynamics simulations based on the first-principles effective Hamiltonian. As an electron donor, an oxygen vacancy generates inhomogeneous electrostatic and displacement fields which impose preferred polarization directions near the oxygen vacancy. When the oxygen vacancies are placed at the top and bottom interfaces, the out-of-plane polarizations are locally developed near the interfaces in the directions away from the interfaces. These polarizations from the interfaces are in opposite directions so that the overall out-of-plane polarization becomes significantly reduced. In the middle of the films, the in-plane domains are formed with containing 90° a1/a2 domain walls and the films are polarized along the [1 1 0] direction even when no electric field is applied. With oxygen vacancies placed at the top interface only, the films exhibit asymmetric hysteresis loops, confirming that the oxygen vacancies are one of the possible sources of ferroelectric imprint. It has been qualitatively demonstrated that the domain structures in the imprint films can be turned on and off by controlling an external field along the thickness direction. This study shows qualitatively that the oxygen vacancies can be utilized for tuning ferroelectric domain structures in films.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/aab6d7