Form follows function: ultrastructure of different morphotypes of Physarum polycephalum

The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2018-04, Vol.51 (13), p.134006
Hauptverfasser: Oettmeier, Christina, Lee, Jonghyun, Döbereiner, Hans-Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 134006
container_title Journal of physics. D, Applied physics
container_volume 51
creator Oettmeier, Christina
Lee, Jonghyun
Döbereiner, Hans-Günther
description The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.
doi_str_mv 10.1088/1361-6463/aab147
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aab147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daab147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfbkybqZpGlab7K4KizoQfEY0nzQLm1TkhTpf2_LiicRBgbmvTc8fghdA74DXBQboDmkeZbTjZQVZPwErX5Pp2iFMSEp5YSfo4sQDhhjlhewQp8757vEurZ1XyGxY69i4_r7ZGyjlyH6UcXRm8TZRDfWGm_6mHTOD7WL02DCIrzVU5B-7JLBtZMyQy3bsbtEZ1a2wVz97DX62D2-b5_T_evTy_ZhnyoKEFMLjDKtAYMBC8pqzgivCFRzawmsyktLGWO65LQkKuNYFlBWIBkvSJVhQtcIH_8q70LwxorBN530kwAsFjBioSAWCuIIZo7cHiONG8TBjb6fC_5nv_nDrgWD2TtPhnEuBm3pN6yUch8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Oettmeier, Christina ; Lee, Jonghyun ; Döbereiner, Hans-Günther</creator><creatorcontrib>Oettmeier, Christina ; Lee, Jonghyun ; Döbereiner, Hans-Günther</creatorcontrib><description>The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aab147</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>acellular slime mold ; cytoskeleton ; F-actin ; SEM ; TEM ; ultrastructure</subject><ispartof>Journal of physics. D, Applied physics, 2018-04, Vol.51 (13), p.134006</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</citedby><cites>FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</cites><orcidid>0000-0003-1691-634X ; 0000-0002-6977-910X ; 0000-0001-7408-1059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aab147/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><title>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.</description><subject>acellular slime mold</subject><subject>cytoskeleton</subject><subject>F-actin</subject><subject>SEM</subject><subject>TEM</subject><subject>ultrastructure</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfbkybqZpGlab7K4KizoQfEY0nzQLm1TkhTpf2_LiicRBgbmvTc8fghdA74DXBQboDmkeZbTjZQVZPwErX5Pp2iFMSEp5YSfo4sQDhhjlhewQp8757vEurZ1XyGxY69i4_r7ZGyjlyH6UcXRm8TZRDfWGm_6mHTOD7WL02DCIrzVU5B-7JLBtZMyQy3bsbtEZ1a2wVz97DX62D2-b5_T_evTy_ZhnyoKEFMLjDKtAYMBC8pqzgivCFRzawmsyktLGWO65LQkKuNYFlBWIBkvSJVhQtcIH_8q70LwxorBN530kwAsFjBioSAWCuIIZo7cHiONG8TBjb6fC_5nv_nDrgWD2TtPhnEuBm3pN6yUch8</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Oettmeier, Christina</creator><creator>Lee, Jonghyun</creator><creator>Döbereiner, Hans-Günther</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid></search><sort><creationdate>20180404</creationdate><title>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</title><author>Oettmeier, Christina ; Lee, Jonghyun ; Döbereiner, Hans-Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acellular slime mold</topic><topic>cytoskeleton</topic><topic>F-actin</topic><topic>SEM</topic><topic>TEM</topic><topic>ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oettmeier, Christina</au><au>Lee, Jonghyun</au><au>Döbereiner, Hans-Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-04-04</date><risdate>2018</risdate><volume>51</volume><issue>13</issue><spage>134006</spage><pages>134006-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aab147</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2018-04, Vol.51 (13), p.134006
issn 0022-3727
1361-6463
language eng
recordid cdi_iop_journals_10_1088_1361_6463_aab147
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects acellular slime mold
cytoskeleton
F-actin
SEM
TEM
ultrastructure
title Form follows function: ultrastructure of different morphotypes of Physarum polycephalum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Form%20follows%20function:%20ultrastructure%20of%20different%20morphotypes%20of%20Physarum%20polycephalum&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Oettmeier,%20Christina&rft.date=2018-04-04&rft.volume=51&rft.issue=13&rft.spage=134006&rft.pages=134006-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aab147&rft_dat=%3Ciop_cross%3Edaab147%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true