Form follows function: ultrastructure of different morphotypes of Physarum polycephalum
The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2018-04, Vol.51 (13), p.134006 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 134006 |
container_title | Journal of physics. D, Applied physics |
container_volume | 51 |
creator | Oettmeier, Christina Lee, Jonghyun Döbereiner, Hans-Günther |
description | The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties. |
doi_str_mv | 10.1088/1361-6463/aab147 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aab147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daab147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfbkybqZpGlab7K4KizoQfEY0nzQLm1TkhTpf2_LiicRBgbmvTc8fghdA74DXBQboDmkeZbTjZQVZPwErX5Pp2iFMSEp5YSfo4sQDhhjlhewQp8757vEurZ1XyGxY69i4_r7ZGyjlyH6UcXRm8TZRDfWGm_6mHTOD7WL02DCIrzVU5B-7JLBtZMyQy3bsbtEZ1a2wVz97DX62D2-b5_T_evTy_ZhnyoKEFMLjDKtAYMBC8pqzgivCFRzawmsyktLGWO65LQkKuNYFlBWIBkvSJVhQtcIH_8q70LwxorBN530kwAsFjBioSAWCuIIZo7cHiONG8TBjb6fC_5nv_nDrgWD2TtPhnEuBm3pN6yUch8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Oettmeier, Christina ; Lee, Jonghyun ; Döbereiner, Hans-Günther</creator><creatorcontrib>Oettmeier, Christina ; Lee, Jonghyun ; Döbereiner, Hans-Günther</creatorcontrib><description>The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aab147</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>acellular slime mold ; cytoskeleton ; F-actin ; SEM ; TEM ; ultrastructure</subject><ispartof>Journal of physics. D, Applied physics, 2018-04, Vol.51 (13), p.134006</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</citedby><cites>FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</cites><orcidid>0000-0003-1691-634X ; 0000-0002-6977-910X ; 0000-0001-7408-1059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aab147/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><title>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.</description><subject>acellular slime mold</subject><subject>cytoskeleton</subject><subject>F-actin</subject><subject>SEM</subject><subject>TEM</subject><subject>ultrastructure</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfbkybqZpGlab7K4KizoQfEY0nzQLm1TkhTpf2_LiicRBgbmvTc8fghdA74DXBQboDmkeZbTjZQVZPwErX5Pp2iFMSEp5YSfo4sQDhhjlhewQp8757vEurZ1XyGxY69i4_r7ZGyjlyH6UcXRm8TZRDfWGm_6mHTOD7WL02DCIrzVU5B-7JLBtZMyQy3bsbtEZ1a2wVz97DX62D2-b5_T_evTy_ZhnyoKEFMLjDKtAYMBC8pqzgivCFRzawmsyktLGWO65LQkKuNYFlBWIBkvSJVhQtcIH_8q70LwxorBN530kwAsFjBioSAWCuIIZo7cHiONG8TBjb6fC_5nv_nDrgWD2TtPhnEuBm3pN6yUch8</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Oettmeier, Christina</creator><creator>Lee, Jonghyun</creator><creator>Döbereiner, Hans-Günther</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid></search><sort><creationdate>20180404</creationdate><title>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</title><author>Oettmeier, Christina ; Lee, Jonghyun ; Döbereiner, Hans-Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f1535dd101e1f1cfd7527b21b463a15b69f3555d97392c470a819b1a5782b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acellular slime mold</topic><topic>cytoskeleton</topic><topic>F-actin</topic><topic>SEM</topic><topic>TEM</topic><topic>ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oettmeier, Christina</au><au>Lee, Jonghyun</au><au>Döbereiner, Hans-Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Form follows function: ultrastructure of different morphotypes of Physarum polycephalum</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-04-04</date><risdate>2018</risdate><volume>51</volume><issue>13</issue><spage>134006</spage><pages>134006-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits 'smart' behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold's mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aab147</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2018-04, Vol.51 (13), p.134006 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_aab147 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | acellular slime mold cytoskeleton F-actin SEM TEM ultrastructure |
title | Form follows function: ultrastructure of different morphotypes of Physarum polycephalum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Form%20follows%20function:%20ultrastructure%20of%20different%20morphotypes%20of%20Physarum%20polycephalum&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Oettmeier,%20Christina&rft.date=2018-04-04&rft.volume=51&rft.issue=13&rft.spage=134006&rft.pages=134006-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aab147&rft_dat=%3Ciop_cross%3Edaab147%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |