Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering
High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2018-03, Vol.51 (11), p.115201 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115201 |
container_title | Journal of physics. D, Applied physics |
container_volume | 51 |
creator | Biskup, B Maszl, C Breilmann, W Held, J Böke, M Benedikt, J von Keudell, A |
description | High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge of the ion-to-neutral ratio in the growth flux and of the ion energy distribution function to optimize the deposited energy per incorporated atom in the film. This quantification is performed by combining two diagnostics, a quartz crystal microbalance (QCM) combined with an ion-repelling grid system (IReGS) to discriminate ions versus neutrals and a HIDEN EQP plasma monitor to measure the ion energy distribution function (IEDF). This approach yields the ionized metal flux fraction (IMFF) as the ionization degree in the growth flux. This is correlated to the plasma performance recorded by time resolved ICCD camera measurements, which allow to identify the formation of pronounced ionization zones, so called spokes, in the HiPIMS plasma. Thereby an automatic technique was developed to identify the spoke mode number. The data indicates two distinct regimes with respect to spoke formation that occur with increasing peak power, a stochastic regime with no spokes at low peak powers followed by a regime with distinct spokes at varying mode numbers at higher peak powers. The IMFF increases with increasing peak power reaching values of almost 80% at very high peak powers. The transition in between the two regimes coincides with a pronounced change in the IMFF. This change indicates that the formation of spokes apparently counteracts the return effect in HiPIMS. Based on the IMFF and the mean energy of the ions, the energy per deposited atom together with the overall energy flux onto the substrate is calculated. This allows us to determine an optimum for the peak power density around 0.5 kW cm−2 for chromium HiPIMS. |
doi_str_mv | 10.1088/1361-6463/aaac15 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aaac15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daaac15</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f86adadf7b5ca5e47f1fe33d4e81d8830a44e023fcbe654061eca157d3bfacac3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePebkybqZpml7lUXdhQUveg7ZZLLNuk1K0uLHr7dlxZMIAwMzzzsMDyHXwO6A1fUCeAlZWZR8oZTSIE7I7Hd0SmaM5XnGq7w6Jxcp7RljoqxhRvZrbw8Deo00WJq68IaJBk_7BqkL3n2hoS326kBH7IPaqHQ_zqnzVDcxtG5oaeN2De3CO0bq2m44JKSt2nns4wimbuh7jM7vLsmZVePy6qfPyevjw8tylW2en9bL-02mOUCf2bpURhlbbYVWAovKgkXOTYE1mLrmTBUFspxbvcVSFKwE1ApEZfjWKq00nxN2vKtjSCmilV10rYqfEpicXMlJjJzEyKOrMXJ7jLjQyX0Yoh8f_A-_-QM3UoCEqUTOQHbG8m_-GntY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Biskup, B ; Maszl, C ; Breilmann, W ; Held, J ; Böke, M ; Benedikt, J ; von Keudell, A</creator><creatorcontrib>Biskup, B ; Maszl, C ; Breilmann, W ; Held, J ; Böke, M ; Benedikt, J ; von Keudell, A</creatorcontrib><description>High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge of the ion-to-neutral ratio in the growth flux and of the ion energy distribution function to optimize the deposited energy per incorporated atom in the film. This quantification is performed by combining two diagnostics, a quartz crystal microbalance (QCM) combined with an ion-repelling grid system (IReGS) to discriminate ions versus neutrals and a HIDEN EQP plasma monitor to measure the ion energy distribution function (IEDF). This approach yields the ionized metal flux fraction (IMFF) as the ionization degree in the growth flux. This is correlated to the plasma performance recorded by time resolved ICCD camera measurements, which allow to identify the formation of pronounced ionization zones, so called spokes, in the HiPIMS plasma. Thereby an automatic technique was developed to identify the spoke mode number. The data indicates two distinct regimes with respect to spoke formation that occur with increasing peak power, a stochastic regime with no spokes at low peak powers followed by a regime with distinct spokes at varying mode numbers at higher peak powers. The IMFF increases with increasing peak power reaching values of almost 80% at very high peak powers. The transition in between the two regimes coincides with a pronounced change in the IMFF. This change indicates that the formation of spokes apparently counteracts the return effect in HiPIMS. Based on the IMFF and the mean energy of the ions, the energy per deposited atom together with the overall energy flux onto the substrate is calculated. This allows us to determine an optimum for the peak power density around 0.5 kW cm−2 for chromium HiPIMS.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aaac15</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>chromium ; deposition rate ; HiPIMS ; ionized metal flux fraction ; magnetron sputtering ; spokes</subject><ispartof>Journal of physics. D, Applied physics, 2018-03, Vol.51 (11), p.115201</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-f86adadf7b5ca5e47f1fe33d4e81d8830a44e023fcbe654061eca157d3bfacac3</citedby><cites>FETCH-LOGICAL-c311t-f86adadf7b5ca5e47f1fe33d4e81d8830a44e023fcbe654061eca157d3bfacac3</cites><orcidid>0000-0002-7009-4028 ; 0000-0003-3887-9359 ; 0000-0003-1206-7504 ; 0000-0003-4073-0625 ; 0000-0002-8954-1908 ; 0000-0003-1062-5808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aaac15/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Biskup, B</creatorcontrib><creatorcontrib>Maszl, C</creatorcontrib><creatorcontrib>Breilmann, W</creatorcontrib><creatorcontrib>Held, J</creatorcontrib><creatorcontrib>Böke, M</creatorcontrib><creatorcontrib>Benedikt, J</creatorcontrib><creatorcontrib>von Keudell, A</creatorcontrib><title>Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge of the ion-to-neutral ratio in the growth flux and of the ion energy distribution function to optimize the deposited energy per incorporated atom in the film. This quantification is performed by combining two diagnostics, a quartz crystal microbalance (QCM) combined with an ion-repelling grid system (IReGS) to discriminate ions versus neutrals and a HIDEN EQP plasma monitor to measure the ion energy distribution function (IEDF). This approach yields the ionized metal flux fraction (IMFF) as the ionization degree in the growth flux. This is correlated to the plasma performance recorded by time resolved ICCD camera measurements, which allow to identify the formation of pronounced ionization zones, so called spokes, in the HiPIMS plasma. Thereby an automatic technique was developed to identify the spoke mode number. The data indicates two distinct regimes with respect to spoke formation that occur with increasing peak power, a stochastic regime with no spokes at low peak powers followed by a regime with distinct spokes at varying mode numbers at higher peak powers. The IMFF increases with increasing peak power reaching values of almost 80% at very high peak powers. The transition in between the two regimes coincides with a pronounced change in the IMFF. This change indicates that the formation of spokes apparently counteracts the return effect in HiPIMS. Based on the IMFF and the mean energy of the ions, the energy per deposited atom together with the overall energy flux onto the substrate is calculated. This allows us to determine an optimum for the peak power density around 0.5 kW cm−2 for chromium HiPIMS.</description><subject>chromium</subject><subject>deposition rate</subject><subject>HiPIMS</subject><subject>ionized metal flux fraction</subject><subject>magnetron sputtering</subject><subject>spokes</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePebkybqZpml7lUXdhQUveg7ZZLLNuk1K0uLHr7dlxZMIAwMzzzsMDyHXwO6A1fUCeAlZWZR8oZTSIE7I7Hd0SmaM5XnGq7w6Jxcp7RljoqxhRvZrbw8Deo00WJq68IaJBk_7BqkL3n2hoS326kBH7IPaqHQ_zqnzVDcxtG5oaeN2De3CO0bq2m44JKSt2nns4wimbuh7jM7vLsmZVePy6qfPyevjw8tylW2en9bL-02mOUCf2bpURhlbbYVWAovKgkXOTYE1mLrmTBUFspxbvcVSFKwE1ApEZfjWKq00nxN2vKtjSCmilV10rYqfEpicXMlJjJzEyKOrMXJ7jLjQyX0Yoh8f_A-_-QM3UoCEqUTOQHbG8m_-GntY</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Biskup, B</creator><creator>Maszl, C</creator><creator>Breilmann, W</creator><creator>Held, J</creator><creator>Böke, M</creator><creator>Benedikt, J</creator><creator>von Keudell, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7009-4028</orcidid><orcidid>https://orcid.org/0000-0003-3887-9359</orcidid><orcidid>https://orcid.org/0000-0003-1206-7504</orcidid><orcidid>https://orcid.org/0000-0003-4073-0625</orcidid><orcidid>https://orcid.org/0000-0002-8954-1908</orcidid><orcidid>https://orcid.org/0000-0003-1062-5808</orcidid></search><sort><creationdate>20180321</creationdate><title>Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering</title><author>Biskup, B ; Maszl, C ; Breilmann, W ; Held, J ; Böke, M ; Benedikt, J ; von Keudell, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f86adadf7b5ca5e47f1fe33d4e81d8830a44e023fcbe654061eca157d3bfacac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>chromium</topic><topic>deposition rate</topic><topic>HiPIMS</topic><topic>ionized metal flux fraction</topic><topic>magnetron sputtering</topic><topic>spokes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biskup, B</creatorcontrib><creatorcontrib>Maszl, C</creatorcontrib><creatorcontrib>Breilmann, W</creatorcontrib><creatorcontrib>Held, J</creatorcontrib><creatorcontrib>Böke, M</creatorcontrib><creatorcontrib>Benedikt, J</creatorcontrib><creatorcontrib>von Keudell, A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biskup, B</au><au>Maszl, C</au><au>Breilmann, W</au><au>Held, J</au><au>Böke, M</au><au>Benedikt, J</au><au>von Keudell, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>51</volume><issue>11</issue><spage>115201</spage><pages>115201-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge of the ion-to-neutral ratio in the growth flux and of the ion energy distribution function to optimize the deposited energy per incorporated atom in the film. This quantification is performed by combining two diagnostics, a quartz crystal microbalance (QCM) combined with an ion-repelling grid system (IReGS) to discriminate ions versus neutrals and a HIDEN EQP plasma monitor to measure the ion energy distribution function (IEDF). This approach yields the ionized metal flux fraction (IMFF) as the ionization degree in the growth flux. This is correlated to the plasma performance recorded by time resolved ICCD camera measurements, which allow to identify the formation of pronounced ionization zones, so called spokes, in the HiPIMS plasma. Thereby an automatic technique was developed to identify the spoke mode number. The data indicates two distinct regimes with respect to spoke formation that occur with increasing peak power, a stochastic regime with no spokes at low peak powers followed by a regime with distinct spokes at varying mode numbers at higher peak powers. The IMFF increases with increasing peak power reaching values of almost 80% at very high peak powers. The transition in between the two regimes coincides with a pronounced change in the IMFF. This change indicates that the formation of spokes apparently counteracts the return effect in HiPIMS. Based on the IMFF and the mean energy of the ions, the energy per deposited atom together with the overall energy flux onto the substrate is calculated. This allows us to determine an optimum for the peak power density around 0.5 kW cm−2 for chromium HiPIMS.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aaac15</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7009-4028</orcidid><orcidid>https://orcid.org/0000-0003-3887-9359</orcidid><orcidid>https://orcid.org/0000-0003-1206-7504</orcidid><orcidid>https://orcid.org/0000-0003-4073-0625</orcidid><orcidid>https://orcid.org/0000-0002-8954-1908</orcidid><orcidid>https://orcid.org/0000-0003-1062-5808</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2018-03, Vol.51 (11), p.115201 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_aaac15 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | chromium deposition rate HiPIMS ionized metal flux fraction magnetron sputtering spokes |
title | Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20spokes%20on%20the%20ionized%20metal%20flux%20fraction%20in%20chromium%20high%20power%20impulse%20magnetron%20sputtering&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Biskup,%20B&rft.date=2018-03-21&rft.volume=51&rft.issue=11&rft.spage=115201&rft.pages=115201-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aaac15&rft_dat=%3Ciop_cross%3Edaaac15%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |